library_name: diffusers | |
pipeline_tag: image-to-image | |
license: mit | |
## EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling | |
**EQ-VAE** regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations. | |
Project page: https://eq-vae.github.io/. | |
--- | |
#### Model Description | |
This model is a regularized version of [SD-VAE](https://github.com/CompVis/latent-diffusion). We finetune it with EQ-VAE regularization for 5 epochs on OpenImages. | |
## Model Usage | |
2. **Loading the Model** | |
You can load the model from the Hugging Face Hub: | |
```python | |
from transformers import AutoencoderKL | |
model = AutoencoderKL.from_pretrained("zelaki/eq-vae") | |
#### Metrics | |
Reconstruction performance of eq-vae-ema on Imagenet Validation Set. | |
| **Metric** | **Score** | | |
|------------|-----------| | |
| **FID** | 0.82 | | |
| **PSNR** | 25.95 | | |
| **LPIPS** | 0.141 | | |
| **SSIM** | 0.72 | | |
--- |