EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Arxiv: https://arxiv.org/abs/2502.09509
EQ-VAE regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations.
Model Description
This model is a regularized version of SD-VAE. We finetune it with EQ-VAE regularization for 44 epochs on Imagenet with EMA weights.
Model Usage
These weights are intended to be used with the EQ-VAE codebase or the CompVis Stable Diffusion codebase. If you are looking for the model to use with the 🧨 diffusers library, come here.
Metrics
Reconstruction performance of eq-vae-ema on Imagenet Validation Set.
Metric | Score |
---|---|
FID | 0.552 |
PSNR | 26.158 |
LPIPS | 0.133 |
SSIM | 0.725 |