|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.common.chunk_h import chunk_bwd_dh, chunk_fwd_h |
|
from fla.ops.utils import chunk_local_cumsum |
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous |
|
|
|
|
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=4), |
|
], |
|
key=["BT", "BK", "BV"], |
|
) |
|
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) |
|
@triton.jit |
|
def chunk_simple_gla_fwd_kernel_o( |
|
q, |
|
k, |
|
v, |
|
h, |
|
g, |
|
o, |
|
offsets, |
|
indices, |
|
scale, |
|
T: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NT: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_tg = i_t |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
else: |
|
NT = tl.cdiv(T, BT) |
|
i_tg = i_b * NT + i_t |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
o_i = tl.arange(0, BT) |
|
m_s = o_i[:, None] >= o_i[None, :] |
|
|
|
b_o = tl.zeros([BT, BV], dtype=tl.float32) |
|
b_s = tl.zeros([BT, BT], dtype=tl.float32) |
|
for i_k in range(tl.cdiv(K, BK)): |
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_h = tl.load(p_h, boundary_check=(0, 1)) |
|
b_o += tl.dot(b_q, b_h, allow_tf32=False) |
|
b_s += tl.dot(b_q, b_k, allow_tf32=False) |
|
|
|
if HEAD_FIRST: |
|
p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) |
|
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
else: |
|
p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) |
|
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
b_g = tl.load(p_g, boundary_check=(0,)) |
|
b_o = b_o * tl.exp(b_g)[:, None] |
|
b_s = b_s * tl.exp(b_g[:, None] - b_g[None, :]) |
|
b_s = tl.where(m_s, b_s, 0) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale |
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=4), |
|
triton.Config({}, num_warps=8) |
|
], |
|
key=["BT", "BK", "BV"], |
|
) |
|
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) |
|
@triton.jit |
|
def chunk_simple_gla_bwd_kernel_dqkg( |
|
q, |
|
k, |
|
v, |
|
h, |
|
g, |
|
do, |
|
dh, |
|
dq, |
|
dk, |
|
dg, |
|
offsets, |
|
indices, |
|
scale, |
|
B: tl.constexpr, |
|
T: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_tg = i_t |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
all = T |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
else: |
|
NT = tl.cdiv(T, BT) |
|
i_tg = i_b * NT + i_t |
|
bos, eos = i_b * T, i_b * T + T |
|
all = B * T |
|
o_i = tl.arange(0, BT) |
|
|
|
if HEAD_FIRST: |
|
p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) |
|
b_g_last = tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) |
|
else: |
|
p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) |
|
b_g_last = tl.load(g + (bos + min(i_t * BT + BT, T) - 1) * H + i_h) |
|
b_g = tl.load(p_g, boundary_check=(0,)) |
|
|
|
b_dq = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_dk = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_ds = tl.zeros([BT, BT], dtype=tl.float32) |
|
b_dg = tl.zeros([BT,], dtype=tl.float32) |
|
b_dg_last = tl.zeros([1,], dtype=tl.float32) |
|
|
|
for i_v in range(tl.cdiv(V, BV)): |
|
if HEAD_FIRST: |
|
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
else: |
|
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
|
|
b_h = tl.load(p_h, boundary_check=(0, 1)) |
|
b_dh = tl.load(p_dh, boundary_check=(0, 1)) |
|
|
|
b_dg_last += (tl.sum(b_h * b_dh)) |
|
b_ds += tl.dot(b_do, tl.trans(b_v)) |
|
b_dq += tl.dot(b_do, b_h.to(b_do.dtype)) |
|
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype)) |
|
|
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dg = tl.make_block_ptr(dg + (i_k*B*H + i_bh) * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BK, BT), (0, 1)) |
|
p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dg = tl.make_block_ptr(dg + (i_k*all + bos) * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_dg_last *= tl.exp(b_g_last) |
|
b_dq = b_dq * tl.exp(b_g)[:, None] * scale |
|
b_dk = b_dk * tl.exp(-b_g + b_g_last)[:, None] |
|
b_dg_last += tl.sum(b_dk * b_k) |
|
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale * tl.exp(b_g[:, None] - b_g[None, :]), 0) |
|
b_ds = b_ds.to(b_k.dtype) |
|
|
|
b_dq += tl.dot(b_ds, b_k) |
|
b_dk += tl.dot(tl.trans(b_ds), b_q) |
|
b_dg += tl.sum(b_q * b_dq - b_k * b_dk, axis=1) |
|
|
|
|
|
b_dg = tl.where(o_i < min(BT, T-i_t*BT) - 1, b_dg, b_dg + b_dg_last) |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,)) |
|
|
|
|
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
triton.Config({}, num_warps=8), |
|
], |
|
key=["BT", "BK", "BV"], |
|
) |
|
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) |
|
@triton.jit |
|
def chunk_simple_gla_bwd_kernel_dv( |
|
q, |
|
k, |
|
g, |
|
do, |
|
dv, |
|
dh, |
|
offsets, |
|
indices, |
|
scale, |
|
T: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_tg = i_t |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
else: |
|
NT = tl.cdiv(T, BT) |
|
i_tg = i_b * NT + i_t |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if HEAD_FIRST: |
|
b_g = tl.load(g + i_bh * T + i_t * BT + tl.arange(0, BT)) |
|
b_g_last = tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) |
|
else: |
|
b_g = tl.load(g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h) |
|
b_g_last = tl.load(g + (bos + min(i_t * BT + BT, T) - 1) * H + i_h) |
|
b_dv = tl.zeros([BT, BV], dtype=tl.float32) |
|
for i_k in range(tl.cdiv(K, BK)): |
|
if HEAD_FIRST: |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
else: |
|
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
|
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_dh = tl.load(p_dh, boundary_check=(0, 1)) |
|
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype)) * tl.exp(-b_g + b_g_last)[:, None] |
|
|
|
b_A = tl.zeros([BT, BT], dtype=tl.float32) |
|
for i_k in range(tl.cdiv(K, BK)): |
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_A += tl.dot(b_k, b_q, allow_tf32=False) |
|
|
|
mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :]) & (i_t * BT + tl.arange(0, BT) < T) |
|
b_A = b_A * tl.exp(b_g[None, :] - b_g[:, None]) * scale |
|
b_A = tl.where(mask, b_A, 0).to(do.dtype.element_ty) |
|
|
|
if HEAD_FIRST: |
|
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
else: |
|
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
b_dv += tl.dot(b_A, b_do) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_simple_gla_fwd_o( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
h: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> torch.Tensor: |
|
if head_first: |
|
B, H, T, K, V = *q.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *q.shape, v.shape[-1] |
|
BT = min(chunk_size, triton.next_power_of_2(T)) |
|
if offsets is None: |
|
NT = triton.cdiv(T, BT) |
|
else: |
|
if indices is None: |
|
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) |
|
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) |
|
NT = len(indices) |
|
BK = min(triton.next_power_of_2(K), 64) |
|
BV = min(triton.next_power_of_2(V), 64) |
|
NV = triton.cdiv(V, BV) |
|
|
|
o = torch.empty_like(v) |
|
grid = (NV, NT, B * H) |
|
chunk_simple_gla_fwd_kernel_o[grid]( |
|
q, |
|
k, |
|
v, |
|
h, |
|
g, |
|
o, |
|
offsets, |
|
indices, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BK=BK, |
|
BV=BV, |
|
NT=NT, |
|
HEAD_FIRST=head_first |
|
) |
|
return o |
|
|
|
|
|
def chunk_simple_gla_bwd_dqkg( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
h: torch.Tensor, |
|
do: torch.Tensor, |
|
dh: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
BT = min(chunk_size, triton.next_power_of_2(T)) |
|
if offsets is None: |
|
NT = triton.cdiv(T, BT) |
|
else: |
|
if indices is None: |
|
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) |
|
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) |
|
NT = len(indices) |
|
BK = min(triton.next_power_of_2(K), 64) |
|
BV = min(triton.next_power_of_2(V), 64) |
|
NK = triton.cdiv(K, BK) |
|
|
|
dq = torch.empty_like(q) |
|
dk = torch.empty_like(k) |
|
dg = torch.empty(NK, *g.shape, dtype=torch.float32, device=g.device) |
|
grid = (NK, NT, B * H) |
|
chunk_simple_gla_bwd_kernel_dqkg[grid]( |
|
q, |
|
k, |
|
v, |
|
h, |
|
g, |
|
do, |
|
dh, |
|
dq, |
|
dk, |
|
dg, |
|
offsets, |
|
indices, |
|
scale, |
|
B=B, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BK=BK, |
|
BV=BV, |
|
HEAD_FIRST=head_first |
|
) |
|
dg = chunk_local_cumsum(dg.sum(0), chunk_size, reverse=True, offsets=offsets, head_first=head_first) |
|
return dq, dk, dg |
|
|
|
|
|
def chunk_simple_gla_bwd_dv( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
g: torch.Tensor, |
|
do: torch.Tensor, |
|
dh: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> torch.Tensor: |
|
if head_first: |
|
B, H, T, K, V = *k.shape, do.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, do.shape[-1] |
|
BT = min(chunk_size, triton.next_power_of_2(T)) |
|
if offsets is None: |
|
NT = triton.cdiv(T, BT) |
|
else: |
|
if indices is None: |
|
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) |
|
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) |
|
NT = len(indices) |
|
BK = min(triton.next_power_of_2(K), 64) |
|
BV = min(triton.next_power_of_2(V), 64) |
|
NV = triton.cdiv(V, BV) |
|
|
|
dv = torch.empty_like(do) |
|
grid = (NV, NT, B * H) |
|
chunk_simple_gla_bwd_kernel_dv[grid]( |
|
q, |
|
k, |
|
g, |
|
do, |
|
dv, |
|
dh, |
|
offsets, |
|
indices, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BK=BK, |
|
BV=BV, |
|
HEAD_FIRST=head_first |
|
) |
|
return dv |
|
|
|
|
|
def chunk_simple_gla_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
scale: float, |
|
initial_state: torch.Tensor, |
|
output_final_state: bool, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, head_first=head_first) |
|
h, ht = chunk_fwd_h( |
|
k=k, |
|
v=v, |
|
g=g, |
|
gk=None, |
|
gv=None, |
|
h0=initial_state, |
|
output_final_state=output_final_state, |
|
states_in_fp32=False, |
|
offsets=offsets, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
o = chunk_simple_gla_fwd_o( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
h=h, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return g, o, ht |
|
|
|
|
|
def chunk_simple_gla_bwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
initial_state: torch.Tensor, |
|
do: torch.Tensor, |
|
dht: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
|
h, _ = chunk_fwd_h( |
|
k=k, |
|
v=v, |
|
g=g, |
|
gk=None, |
|
gv=None, |
|
h0=initial_state, |
|
output_final_state=False, |
|
states_in_fp32=True, |
|
offsets=offsets, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dh, dh0 = chunk_bwd_dh( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
gk=None, |
|
gv=None, |
|
do=do, |
|
h0=initial_state, |
|
dht=dht, |
|
scale=scale, |
|
states_in_fp32=True, |
|
offsets=offsets, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dq, dk, dg = chunk_simple_gla_bwd_dqkg( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
h=h, |
|
do=do, |
|
dh=dh, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dv = chunk_simple_gla_bwd_dv( |
|
q=q, |
|
k=k, |
|
g=g, |
|
do=do, |
|
dh=dh, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return dq, dk, dv, dg, dh0 |
|
|
|
|
|
class ChunkSimpleGLAFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_fwd |
|
def forward( |
|
ctx, |
|
q, |
|
k, |
|
v, |
|
g, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
offsets, |
|
head_first |
|
): |
|
T = q.shape[2] if head_first else q.shape[1] |
|
chunk_size = min(64, triton.next_power_of_2(T)) |
|
|
|
|
|
|
|
|
|
|
|
indices = None |
|
if offsets is not None: |
|
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()]) |
|
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) |
|
|
|
g, o, ht = chunk_simple_gla_fwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
scale=scale, |
|
initial_state=initial_state, |
|
output_final_state=output_final_state, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
ctx.save_for_backward(q, k, v, g, initial_state) |
|
ctx.chunk_size = chunk_size |
|
ctx.scale = scale |
|
ctx.offsets = offsets |
|
ctx.indices = indices |
|
ctx.head_first = head_first |
|
return o.to(q.dtype), ht |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dht): |
|
chunk_size, scale, offsets, indices, head_first = ctx.chunk_size, ctx.scale, ctx.offsets, ctx.indices, ctx.head_first |
|
q, k, v, g, initial_state = ctx.saved_tensors |
|
dq, dk, dv, dg, dh0 = chunk_simple_gla_bwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
initial_state=initial_state, |
|
do=do, |
|
dht=dht, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg.to(g.dtype), None, dh0, None, None, None |
|
|
|
|
|
def chunk_simple_gla( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Args: |
|
q (torch.Tensor): |
|
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
k (torch.Tensor): |
|
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
v (torch.Tensor): |
|
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
g (torch.Tensor): |
|
Forget gates of shape `[B, H, T]` if `head_first=True` else `[B, T, H]`. |
|
Compared to GLA, the gating is head-wise instead of elementwise. |
|
scale (Optional[int]): |
|
Scale factor for the attention scores. |
|
If not provided, it will default to `1 / sqrt(K)`. Default: `None`. |
|
initial_state (Optional[torch.Tensor]): |
|
Initial state of shape `[N, H, K, V]` for `N` input sequences. |
|
For equal-length input sequences, `N` equals the batch size `B`. |
|
Default: `None`. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`. |
|
offsets (Optional[torch.LongTensor]): |
|
Offsets of shape `[N+1]` defining the bos/eos positions of `N` variable-length sequences in the batch. |
|
For example, |
|
if `offsets` is `[0, 1, 3, 6, 10, 15]`, there are `N=5` sequences with lengths 1, 2, 3, 4 and 5 respectively. |
|
If provided, the inputs are concatenated and the batch size `B` is expected to be 1. |
|
Default: `None`. |
|
head_first (Optional[bool]): |
|
Whether the inputs are in the head-first format, which is not supported for variable-length inputs. |
|
Default: `True`. |
|
|
|
Returns: |
|
o (torch.Tensor): |
|
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
final_state (torch.Tensor): |
|
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`. |
|
|
|
Examples:: |
|
>>> import torch |
|
>>> import torch.nn.functional as F |
|
>>> from einops import rearrange |
|
>>> from fla.ops.simple_gla import chunk_simple_gla |
|
# inputs with equal lengths |
|
>>> B, T, H, K, V = 4, 2048, 4, 512, 512 |
|
>>> q = torch.randn(B, T, H, K, device='cuda') |
|
>>> k = torch.randn(B, T, H, K, device='cuda') |
|
>>> v = torch.randn(B, T, H, V, device='cuda') |
|
>>> g = F.logsigmoid(torch.randn(B, T, H, device='cuda')) |
|
>>> o, ht = chunk_simple_gla(q, k, v, g, |
|
initial_state=None, |
|
output_final_state=True, |
|
head_first=False) |
|
# for variable-length inputs, the batch size `B` is expected to be 1 and `offsets` is required |
|
>>> q, k, v, g = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g)) |
|
# for a batch with 4 sequences, offsets with 5 start/end positions are expected |
|
>>> offsets = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) |
|
>>> o_var, ht_var = chunk_simple_gla(q, k, v, g, |
|
initial_state=None, |
|
output_final_state=True, |
|
offsets=offsets, |
|
head_first=False) |
|
>>> assert o.allclose(o_var.view(o.shape)) |
|
>>> assert ht.allclose(ht_var) |
|
""" |
|
if offsets is not None: |
|
if q.shape[0] != 1: |
|
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `offsets`." |
|
f"Please flatten variable-length inputs before processing.") |
|
if head_first: |
|
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") |
|
if initial_state is not None and initial_state.shape[0] != len(offsets) - 1: |
|
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " |
|
f"i.e., {len(offsets) - 1} rather than {initial_state.shape[0]}.") |
|
if scale is None: |
|
scale = k.shape[-1] ** -0.5 |
|
o, final_state = ChunkSimpleGLAFunction.apply( |
|
q, |
|
k, |
|
v, |
|
g, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
offsets, |
|
head_first |
|
) |
|
return o, final_state |
|
|