# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.ops.common.chunk_h import chunk_bwd_dh, chunk_fwd_h from fla.ops.utils import chunk_local_cumsum from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous @triton.autotune( configs=[ triton.Config({}, num_warps=4), ], key=["BT", "BK", "BV"], ) @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def chunk_simple_gla_fwd_kernel_o( q, k, v, h, g, o, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) b_s = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BK, BV] b_h = tl.load(p_h, boundary_check=(0, 1)) b_o += tl.dot(b_q, b_h, allow_tf32=False) b_s += tl.dot(b_q, b_k, allow_tf32=False) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_g = tl.load(p_g, boundary_check=(0,)) b_o = b_o * tl.exp(b_g)[:, None] b_s = b_s * tl.exp(b_g[:, None] - b_g[None, :]) b_s = tl.where(m_s, b_s, 0) b_v = tl.load(p_v, boundary_check=(0, 1)) b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({}, num_warps=4), triton.Config({}, num_warps=8) ], key=["BT", "BK", "BV"], ) @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def chunk_simple_gla_bwd_kernel_dqkg( q, k, v, h, g, do, dh, dq, dk, dg, offsets, indices, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T all = B * T o_i = tl.arange(0, BT) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) b_g_last = tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_g_last = tl.load(g + (bos + min(i_t * BT + BT, T) - 1) * H + i_h) b_g = tl.load(p_g, boundary_check=(0,)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_ds = tl.zeros([BT, BT], dtype=tl.float32) b_dg = tl.zeros([BT,], dtype=tl.float32) b_dg_last = tl.zeros([1,], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) else: p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) # [BV, BK] b_h = tl.load(p_h, boundary_check=(0, 1)) b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_dg_last += (tl.sum(b_h * b_dh)) b_ds += tl.dot(b_do, tl.trans(b_v)) b_dq += tl.dot(b_do, b_h.to(b_do.dtype)) b_dk += tl.dot(b_v, b_dh.to(b_v.dtype)) if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + (i_k*B*H + i_bh) * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BK, BT), (0, 1)) p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + (i_k*all + bos) * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dg_last *= tl.exp(b_g_last) b_dq = b_dq * tl.exp(b_g)[:, None] * scale b_dk = b_dk * tl.exp(-b_g + b_g_last)[:, None] b_dg_last += tl.sum(b_dk * b_k) b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale * tl.exp(b_g[:, None] - b_g[None, :]), 0) b_ds = b_ds.to(b_k.dtype) # [BT, BK] b_dq += tl.dot(b_ds, b_k) b_dk += tl.dot(tl.trans(b_ds), b_q) b_dg += tl.sum(b_q * b_dq - b_k * b_dk, axis=1) # (SY 09/21) revcumsum in a separate kernel due to strange triton compiler issue # b_dg = tl.dot(tl.where(o_i[:, None] <= o_i[None, :], 1., 0.), b_dg, allow_tf32=False) + b_dg_last) b_dg = tl.where(o_i < min(BT, T-i_t*BT) - 1, b_dg, b_dg + b_dg_last) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,)) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), ], key=["BT", "BK", "BV"], ) @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def chunk_simple_gla_bwd_kernel_dv( q, k, g, do, dv, dh, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: b_g = tl.load(g + i_bh * T + i_t * BT + tl.arange(0, BT)) b_g_last = tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) else: b_g = tl.load(g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h) b_g_last = tl.load(g + (bos + min(i_t * BT + BT, T) - 1) * H + i_h) b_dv = tl.zeros([BT, BV], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BK, BV] b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype)) * tl.exp(-b_g + b_g_last)[:, None] b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_A += tl.dot(b_k, b_q, allow_tf32=False) mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :]) & (i_t * BT + tl.arange(0, BT) < T) b_A = b_A * tl.exp(b_g[None, :] - b_g[:, None]) * scale b_A = tl.where(mask, b_A, 0).to(do.dtype.element_ty) if HEAD_FIRST: p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dv += tl.dot(b_A, b_do) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) def chunk_simple_gla_fwd_o( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, h: torch.Tensor, scale: float, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> torch.Tensor: if head_first: B, H, T, K, V = *q.shape, v.shape[-1] else: B, T, H, K, V = *q.shape, v.shape[-1] BT = min(chunk_size, triton.next_power_of_2(T)) if offsets is None: NT = triton.cdiv(T, BT) else: if indices is None: indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) NT = len(indices) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(V), 64) NV = triton.cdiv(V, BV) o = torch.empty_like(v) grid = (NV, NT, B * H) chunk_simple_gla_fwd_kernel_o[grid]( q, k, v, h, g, o, offsets, indices, scale, T=T, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT, HEAD_FIRST=head_first ) return o def chunk_simple_gla_bwd_dqkg( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, h: torch.Tensor, do: torch.Tensor, dh: torch.Tensor, scale: float, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if head_first: B, H, T, K, V = *k.shape, v.shape[-1] else: B, T, H, K, V = *k.shape, v.shape[-1] BT = min(chunk_size, triton.next_power_of_2(T)) if offsets is None: NT = triton.cdiv(T, BT) else: if indices is None: indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) NT = len(indices) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(V), 64) NK = triton.cdiv(K, BK) dq = torch.empty_like(q) dk = torch.empty_like(k) dg = torch.empty(NK, *g.shape, dtype=torch.float32, device=g.device) grid = (NK, NT, B * H) chunk_simple_gla_bwd_kernel_dqkg[grid]( q, k, v, h, g, do, dh, dq, dk, dg, offsets, indices, scale, B=B, T=T, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, HEAD_FIRST=head_first ) dg = chunk_local_cumsum(dg.sum(0), chunk_size, reverse=True, offsets=offsets, head_first=head_first) return dq, dk, dg def chunk_simple_gla_bwd_dv( q: torch.Tensor, k: torch.Tensor, g: torch.Tensor, do: torch.Tensor, dh: torch.Tensor, scale: float, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> torch.Tensor: if head_first: B, H, T, K, V = *k.shape, do.shape[-1] else: B, T, H, K, V = *k.shape, do.shape[-1] BT = min(chunk_size, triton.next_power_of_2(T)) if offsets is None: NT = triton.cdiv(T, BT) else: if indices is None: indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()]) indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) NT = len(indices) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(V), 64) NV = triton.cdiv(V, BV) dv = torch.empty_like(do) grid = (NV, NT, B * H) chunk_simple_gla_bwd_kernel_dv[grid]( q, k, g, do, dv, dh, offsets, indices, scale, T=T, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, HEAD_FIRST=head_first ) return dv def chunk_simple_gla_fwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, scale: float, initial_state: torch.Tensor, output_final_state: bool, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: g = chunk_local_cumsum(g, chunk_size, offsets=offsets, head_first=head_first) h, ht = chunk_fwd_h( k=k, v=v, g=g, gk=None, gv=None, h0=initial_state, output_final_state=output_final_state, states_in_fp32=False, offsets=offsets, head_first=head_first, chunk_size=chunk_size ) o = chunk_simple_gla_fwd_o( q=q, k=k, v=v, g=g, h=h, scale=scale, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) return g, o, ht def chunk_simple_gla_bwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor, do: torch.Tensor, dht: torch.Tensor, scale: float, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # (SY 09/22) states_in_fp32 seems not affecting the error of dg but for safety, set to True h, _ = chunk_fwd_h( k=k, v=v, g=g, gk=None, gv=None, h0=initial_state, output_final_state=False, states_in_fp32=True, offsets=offsets, head_first=head_first, chunk_size=chunk_size ) dh, dh0 = chunk_bwd_dh( q=q, k=k, v=v, g=g, gk=None, gv=None, do=do, h0=initial_state, dht=dht, scale=scale, states_in_fp32=True, offsets=offsets, head_first=head_first, chunk_size=chunk_size ) dq, dk, dg = chunk_simple_gla_bwd_dqkg( q=q, k=k, v=v, g=g, h=h, do=do, dh=dh, scale=scale, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) dv = chunk_simple_gla_bwd_dv( q=q, k=k, g=g, do=do, dh=dh, scale=scale, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) return dq, dk, dv, dg, dh0 class ChunkSimpleGLAFunction(torch.autograd.Function): @staticmethod @contiguous @autocast_custom_fwd def forward( ctx, q, k, v, g, scale, initial_state, output_final_state, offsets, head_first ): T = q.shape[2] if head_first else q.shape[1] chunk_size = min(64, triton.next_power_of_2(T)) # 2-d indices denoting the offsets of chunks in each sequence # for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64, # then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be # [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]] indices = None if offsets is not None: indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()]) indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) g, o, ht = chunk_simple_gla_fwd( q=q, k=k, v=v, g=g, scale=scale, initial_state=initial_state, output_final_state=output_final_state, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) ctx.save_for_backward(q, k, v, g, initial_state) ctx.chunk_size = chunk_size ctx.scale = scale ctx.offsets = offsets ctx.indices = indices ctx.head_first = head_first return o.to(q.dtype), ht @staticmethod @contiguous @autocast_custom_bwd def backward(ctx, do, dht): chunk_size, scale, offsets, indices, head_first = ctx.chunk_size, ctx.scale, ctx.offsets, ctx.indices, ctx.head_first q, k, v, g, initial_state = ctx.saved_tensors dq, dk, dv, dg, dh0 = chunk_simple_gla_bwd( q=q, k=k, v=v, g=g, initial_state=initial_state, do=do, dht=dht, scale=scale, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg.to(g.dtype), None, dh0, None, None, None def chunk_simple_gla( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, # log decay scale: Optional[float] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, offsets: Optional[torch.LongTensor] = None, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. g (torch.Tensor): Forget gates of shape `[B, H, T]` if `head_first=True` else `[B, T, H]`. Compared to GLA, the gating is head-wise instead of elementwise. scale (Optional[int]): Scale factor for the attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `[N, H, K, V]` for `N` input sequences. For equal-length input sequences, `N` equals the batch size `B`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state of shape `[N, H, K, V]`. Default: `False`. offsets (Optional[torch.LongTensor]): Offsets of shape `[N+1]` defining the bos/eos positions of `N` variable-length sequences in the batch. For example, if `offsets` is `[0, 1, 3, 6, 10, 15]`, there are `N=5` sequences with lengths 1, 2, 3, 4 and 5 respectively. If provided, the inputs are concatenated and the batch size `B` is expected to be 1. Default: `None`. head_first (Optional[bool]): Whether the inputs are in the head-first format, which is not supported for variable-length inputs. Default: `True`. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. final_state (torch.Tensor): Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`. Examples:: >>> import torch >>> import torch.nn.functional as F >>> from einops import rearrange >>> from fla.ops.simple_gla import chunk_simple_gla # inputs with equal lengths >>> B, T, H, K, V = 4, 2048, 4, 512, 512 >>> q = torch.randn(B, T, H, K, device='cuda') >>> k = torch.randn(B, T, H, K, device='cuda') >>> v = torch.randn(B, T, H, V, device='cuda') >>> g = F.logsigmoid(torch.randn(B, T, H, device='cuda')) >>> o, ht = chunk_simple_gla(q, k, v, g, initial_state=None, output_final_state=True, head_first=False) # for variable-length inputs, the batch size `B` is expected to be 1 and `offsets` is required >>> q, k, v, g = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g)) # for a batch with 4 sequences, offsets with 5 start/end positions are expected >>> offsets = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) >>> o_var, ht_var = chunk_simple_gla(q, k, v, g, initial_state=None, output_final_state=True, offsets=offsets, head_first=False) >>> assert o.allclose(o_var.view(o.shape)) >>> assert ht.allclose(ht_var) """ if offsets is not None: if q.shape[0] != 1: raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `offsets`." f"Please flatten variable-length inputs before processing.") if head_first: raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") if initial_state is not None and initial_state.shape[0] != len(offsets) - 1: raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " f"i.e., {len(offsets) - 1} rather than {initial_state.shape[0]}.") if scale is None: scale = k.shape[-1] ** -0.5 o, final_state = ChunkSimpleGLAFunction.apply( q, k, v, g, scale, initial_state, output_final_state, offsets, head_first ) return o, final_state