Auramind-90M - 90M Parameters

Ultra-lightweight for budget smartphones and edge devices

Specifications

  • Parameters: 90M
  • Base Model: google/gemma-2-270m
  • Memory Usage: ~225MB RAM
  • Quantization: INT8 optimized
  • Inference Speed: 50-150ms on modern smartphones

Mobile Deployment

This variant is specifically optimized for:

  • Target Devices: Budget smartphones and edge devices
  • Memory Requirements: ~225MB RAM
  • Performance: 50-150ms on modern smartphones

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-90m")
model = AutoModelForCausalLM.from_pretrained(
    "zail-ai/auramind-90m",
    torch_dtype=torch.float16,
    device_map="auto",
    low_cpu_mem_usage=True
)

Refer to the main AuraMind repository for complete documentation.

Downloads last month
15
Safetensors
Model size
119M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results