Auramind-90M - 90M Parameters
Ultra-lightweight for budget smartphones and edge devices
Specifications
- Parameters: 90M
- Base Model: google/gemma-2-270m
- Memory Usage: ~225MB RAM
- Quantization: INT8 optimized
- Inference Speed: 50-150ms on modern smartphones
Mobile Deployment
This variant is specifically optimized for:
- Target Devices: Budget smartphones and edge devices
- Memory Requirements: ~225MB RAM
- Performance: 50-150ms on modern smartphones
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-90m")
model = AutoModelForCausalLM.from_pretrained(
"zail-ai/auramind-90m",
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
Refer to the main AuraMind repository for complete documentation.
- Downloads last month
- 15
Evaluation results
- Inference Speed on AuraMind Datasetself-reported50-150ms on modern smartphones
- Memory Usage on AuraMind Datasetself-reported~225MB RAM
- Model Parameters on AuraMind Datasetself-reported90M