Auramind-270M - 270M Parameters

Full-featured smartphone deployment with balanced performance and capabilities

Specifications

  • Parameters: 270M
  • Base Model: google/gemma-2-270m
  • Memory Usage: ~680MB RAM
  • Quantization: INT4 optimized
  • Inference Speed: 100-300ms on modern smartphones

Mobile Deployment

This variant is specifically optimized for:

  • Target Devices: Premium smartphones
  • Memory Requirements: ~680MB RAM
  • Performance: 100-300ms on modern smartphones

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-270m")
model = AutoModelForCausalLM.from_pretrained(
    "zail-ai/auramind-270m",
    torch_dtype=torch.float16,
    device_map="auto",
    low_cpu_mem_usage=True
)

Refer to the main AuraMind repository for complete documentation.

Downloads last month
18
Safetensors
Model size
268M params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results