Auramind-180M - 180M Parameters

Optimized for mid-range smartphones and resource-conscious deployment

Specifications

  • Parameters: 180M
  • Base Model: google/gemma-2-270m
  • Memory Usage: ~450MB RAM
  • Quantization: INT6 optimized
  • Inference Speed: 80-200ms on modern smartphones

Mobile Deployment

This variant is specifically optimized for:

  • Target Devices: Mid-range smartphones
  • Memory Requirements: ~450MB RAM
  • Performance: 80-200ms on modern smartphones

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-180m")
model = AutoModelForCausalLM.from_pretrained(
    "zail-ai/auramind-180m",
    torch_dtype=torch.float16,
    device_map="auto",
    low_cpu_mem_usage=True
)

Refer to the main AuraMind repository for complete documentation.

Downloads last month
19
Safetensors
Model size
193M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results