Auramind-180M - 180M Parameters
Optimized for mid-range smartphones and resource-conscious deployment
Specifications
- Parameters: 180M
- Base Model: google/gemma-2-270m
- Memory Usage: ~450MB RAM
- Quantization: INT6 optimized
- Inference Speed: 80-200ms on modern smartphones
Mobile Deployment
This variant is specifically optimized for:
- Target Devices: Mid-range smartphones
- Memory Requirements: ~450MB RAM
- Performance: 80-200ms on modern smartphones
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-180m")
model = AutoModelForCausalLM.from_pretrained(
"zail-ai/auramind-180m",
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
Refer to the main AuraMind repository for complete documentation.
- Downloads last month
- 19
Evaluation results
- Inference Speed on AuraMind Datasetself-reported80-200ms on modern smartphones
- Memory Usage on AuraMind Datasetself-reported~450MB RAM
- Model Parameters on AuraMind Datasetself-reported180M