|
import os |
|
import os.path as osp |
|
import time |
|
import sys |
|
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
sys.path.append(CODE_SPACE) |
|
|
|
import argparse |
|
import copy |
|
import mmcv |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
try: |
|
from mmcv.utils import Config, DictAction |
|
except: |
|
from mmengine import Config, DictAction |
|
import socket |
|
import subprocess |
|
from datetime import timedelta |
|
import random |
|
import numpy as np |
|
import logging |
|
|
|
from mono.datasets.distributed_sampler import log_canonical_transfer_info |
|
from mono.utils.comm import init_env, collect_env |
|
from mono.utils.logger import setup_logger |
|
from mono.utils.db import load_data_info, reset_ckpt_path |
|
from mono.utils.do_train import do_train |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a segmentor') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument('--work-dir', help='the dir to save logs and models') |
|
parser.add_argument('--tensorboard-dir', help='the dir to save tensorboard logs') |
|
parser.add_argument( |
|
'--load-from', help='the checkpoint file to load weights from') |
|
parser.add_argument( |
|
'--resume-from', help='the checkpoint file to resume from') |
|
parser.add_argument( |
|
'--no-validate', |
|
action='store_true', |
|
help='whether not to evaluate the checkpoint during training') |
|
parser.add_argument( |
|
'--gpu-ids', |
|
type=int, |
|
nargs='+', |
|
help='ids of gpus to use ' |
|
'(only applicable to non-distributed training)') |
|
parser.add_argument('--seed', type=int, default=88, help='random seed') |
|
parser.add_argument( |
|
'--deterministic', |
|
action='store_true', |
|
help='whether to set deterministic options for CUDNN backend.') |
|
parser.add_argument( |
|
'--use-tensorboard', |
|
action='store_true', |
|
help='whether to set deterministic options for CUDNN backend.') |
|
parser.add_argument( |
|
'--options', nargs='+', action=DictAction, help='custom options') |
|
parser.add_argument('--node_rank', type=int, default=0) |
|
parser.add_argument('--nnodes', |
|
type=int, |
|
default=1, |
|
help='number of nodes') |
|
parser.add_argument( |
|
'--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', |
|
type=int, |
|
default=0, |
|
help='rank') |
|
parser.add_argument('--experiment_name', default='debug', help='the experiment name for mlflow') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def set_random_seed(seed, deterministic=False): |
|
"""Set random seed. |
|
Args: |
|
@seed (int): Seed to be used. |
|
@deterministic (bool): Whether to set the deterministic option for |
|
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` |
|
to True and `torch.backends.cudnn.benchmark` to False. |
|
Default: False. |
|
""" |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
|
|
def main(args): |
|
os.chdir(CODE_SPACE) |
|
cfg = Config.fromfile(args.config) |
|
cfg.dist_params.nnodes = args.nnodes |
|
cfg.dist_params.node_rank = args.node_rank |
|
cfg.deterministic = args.deterministic |
|
if args.options is not None: |
|
cfg.merge_from_dict(args.options) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
cfg.work_dir = args.work_dir |
|
elif cfg.get('work_dir', None) is None: |
|
|
|
cfg.work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0], |
|
args.timestamp) |
|
|
|
if args.tensorboard_dir is not None: |
|
cfg.tensorboard_dir = args.tensorboard_dir |
|
elif cfg.get('tensorboard_dir', None) is None: |
|
|
|
cfg.tensorboard_dir = osp.join(cfg.work_dir, 'tensorboard') |
|
|
|
|
|
if args.load_from is not None: |
|
cfg.load_from = args.load_from |
|
|
|
if args.resume_from is not None: |
|
cfg.resume_from = args.resume_from |
|
|
|
|
|
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True) |
|
os.makedirs(os.path.abspath(cfg.tensorboard_dir), exist_ok=True) |
|
|
|
|
|
cfg.log_file = osp.join(cfg.work_dir, f'{args.timestamp}.log') |
|
logger = setup_logger(cfg.log_file) |
|
|
|
|
|
|
|
meta = dict() |
|
|
|
env_info_dict = collect_env() |
|
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) |
|
dash_line = '-' * 60 + '\n' |
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' + |
|
dash_line) |
|
meta['env_info'] = env_info |
|
|
|
|
|
|
|
|
|
|
|
if args.no_validate: |
|
cfg.evaluation.online_eval = False |
|
|
|
|
|
cfg.seed = args.seed |
|
meta['seed'] = args.seed |
|
meta['exp_name'] = osp.basename(args.config) |
|
|
|
|
|
data_info = {} |
|
load_data_info('data_server_info', data_info=data_info) |
|
cfg.db_info = data_info |
|
|
|
reset_ckpt_path(cfg.model, data_info) |
|
|
|
|
|
|
|
|
|
|
|
if args.launcher == 'None': |
|
cfg.distributed = False |
|
else: |
|
cfg.distributed = True |
|
init_env(args.launcher, cfg) |
|
logger.info(f'Distributed training: {cfg.distributed}') |
|
logger.info(cfg.dist_params) |
|
|
|
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) |
|
|
|
cfg.experiment_name = args.experiment_name |
|
|
|
if not cfg.distributed: |
|
main_worker(0, cfg) |
|
else: |
|
|
|
if args.launcher == 'slurm': |
|
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher)) |
|
elif args.launcher == 'pytorch': |
|
main_worker(args.local_rank, cfg, args.launcher) |
|
|
|
def main_worker(local_rank: int, cfg: dict, launcher: str='slurm'): |
|
logger = setup_logger(cfg.log_file) |
|
if cfg.distributed: |
|
if launcher == 'slurm': |
|
torch.set_num_threads(8) |
|
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank |
|
cfg.dist_params.local_rank = local_rank |
|
os.environ['RANK']=str(cfg.dist_params.global_rank) |
|
else: |
|
torch.set_num_threads(1) |
|
|
|
torch.cuda.set_device(local_rank) |
|
default_timeout = timedelta(minutes=10) |
|
dist.init_process_group( |
|
backend=cfg.dist_params.backend, |
|
init_method=cfg.dist_params.dist_url, |
|
world_size=cfg.dist_params.world_size, |
|
rank=cfg.dist_params.global_rank,) |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cfg.seed is not None: |
|
logger.info(f'Set random seed to {cfg.seed}, deterministic: 'f'{cfg.deterministic}') |
|
set_random_seed(cfg.seed, deterministic=cfg.deterministic) |
|
|
|
do_train(local_rank, cfg) |
|
|
|
|
|
if __name__=='__main__': |
|
|
|
args = parse_args() |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
args.timestamp = timestamp |
|
print(args.work_dir, args.tensorboard_dir) |
|
main(args) |