File size: 9,736 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import os.path as osp
import time
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(CODE_SPACE)
#os.chdir(CODE_SPACE)
import argparse
import copy
import mmcv
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

try:
    from mmcv.utils import Config, DictAction
except:
    from mmengine import Config, DictAction
import socket
import subprocess
from datetime import timedelta
import random
import numpy as np
import logging

from mono.datasets.distributed_sampler import log_canonical_transfer_info
from mono.utils.comm import init_env, collect_env
from mono.utils.logger import setup_logger
from mono.utils.db import load_data_info, reset_ckpt_path
from mono.utils.do_train import do_train


def parse_args():
    parser = argparse.ArgumentParser(description='Train a segmentor')
    parser.add_argument('config', help='train config file path')
    parser.add_argument('--work-dir', help='the dir to save logs and models')
    parser.add_argument('--tensorboard-dir', help='the dir to save tensorboard logs')
    parser.add_argument(
        '--load-from', help='the checkpoint file to load weights from')
    parser.add_argument(
        '--resume-from', help='the checkpoint file to resume from')
    parser.add_argument(
        '--no-validate',
        action='store_true',
        help='whether not to evaluate the checkpoint during training')
    parser.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=88, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
    parser.add_argument(
        '--use-tensorboard',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
    parser.add_argument(
        '--options', nargs='+', action=DictAction, help='custom options')
    parser.add_argument('--node_rank', type=int, default=0)
    parser.add_argument('--nnodes', 
                        type=int, 
                        default=1, 
                        help='number of nodes')
    parser.add_argument(
        '--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm',
        help='job launcher') 
    parser.add_argument('--local_rank', 
                        type=int, 
                        default=0, 
                        help='rank')  
    parser.add_argument('--experiment_name', default='debug', help='the experiment name for mlflow')
    args = parser.parse_args()
    return args

  
def set_random_seed(seed, deterministic=False):
    """Set random seed.
    Args:
        @seed (int): Seed to be used.
        @deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    #if deterministic:
    #    torch.backends.cudnn.deterministic = True
    #    torch.backends.cudnn.benchmark = False

def main(args):
    os.chdir(CODE_SPACE)
    cfg = Config.fromfile(args.config)
    cfg.dist_params.nnodes = args.nnodes
    cfg.dist_params.node_rank = args.node_rank
    cfg.deterministic = args.deterministic
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    #if cfg.get('cudnn_benchmark', False) and args.launcher != 'ror':
    #    torch.backends.cudnn.benchmark = True
    # The flag below controls whether to allow TF32 on matmul. This flag defaults to False
    # in PyTorch 1.12 and later.
    # torch.backends.cuda.matmul.allow_tf32 = False
    # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
    # torch.backends.cudnn.allow_tf32 = False

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename + timestamp as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0], 
                                args.timestamp)
    # tensorboard_dir is determined in this priority: CLI > segment in file > filename
    if args.tensorboard_dir is not None:
        cfg.tensorboard_dir = args.tensorboard_dir
    elif cfg.get('tensorboard_dir', None) is None:
        # use cfg.work_dir + 'tensorboard' as default tensorboard_dir if cfg.tensorboard_dir is None
        cfg.tensorboard_dir = osp.join(cfg.work_dir, 'tensorboard')

    # ckpt path
    if args.load_from is not None:
        cfg.load_from = args.load_from
    # resume training
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    
    # create work_dir and tensorboard_dir
    os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
    os.makedirs(os.path.abspath(cfg.tensorboard_dir), exist_ok=True)
    
    # init the logger before other steps
    cfg.log_file = osp.join(cfg.work_dir, f'{args.timestamp}.log')
    logger = setup_logger(cfg.log_file)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    # logger.info(f'Config:\n{cfg.pretty_text}')

    # mute online evaluation
    if args.no_validate:
        cfg.evaluation.online_eval = False


    cfg.seed = args.seed
    meta['seed'] = args.seed
    meta['exp_name'] = osp.basename(args.config)

    # load data info
    data_info = {}
    load_data_info('data_server_info', data_info=data_info)
    cfg.db_info = data_info
    # update check point info
    reset_ckpt_path(cfg.model, data_info)

    # log data transfer to canonical space info``
    # log_canonical_transfer_info(cfg)
    
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'None':
        cfg.distributed = False
    else:
        cfg.distributed = True
    init_env(args.launcher, cfg)
    logger.info(f'Distributed training: {cfg.distributed}')
    logger.info(cfg.dist_params)
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    
    cfg.experiment_name = args.experiment_name

    if not cfg.distributed:
        main_worker(0, cfg)
    else:
        # distributed training
        if args.launcher == 'slurm': 
            mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher))
        elif args.launcher == 'pytorch':
            main_worker(args.local_rank, cfg, args.launcher)

def main_worker(local_rank: int, cfg: dict, launcher: str='slurm'):
    logger = setup_logger(cfg.log_file)
    if cfg.distributed:
        if launcher == 'slurm':
            torch.set_num_threads(8) # without it, the spawn method is much slower than the launch method 
            cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
            cfg.dist_params.local_rank = local_rank
            os.environ['RANK']=str(cfg.dist_params.global_rank)
        else:
            torch.set_num_threads(1)
        
        torch.cuda.set_device(local_rank)
        default_timeout = timedelta(minutes=10)
        dist.init_process_group(
                backend=cfg.dist_params.backend,
                init_method=cfg.dist_params.dist_url,
                world_size=cfg.dist_params.world_size,
                rank=cfg.dist_params.global_rank,)
                #timeout=default_timeout,)
        dist.barrier()

    # if cfg.distributed:
        
    #     cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
    #     cfg.dist_params.local_rank = local_rank
    #     os.environ['RANK']=str(cfg.dist_params.global_rank)
        
    #     if launcher == 'ror':
    #         init_torch_process_group(use_hvd=False)
    #     else:
    #         #torch.set_num_threads(4) # without it, the spawn method maybe much slower than the launch method 
    #         torch.cuda.set_device(local_rank)
    #         default_timeout = timedelta(minutes=30)
    #         dist.init_process_group(
    #             backend=cfg.dist_params.backend,
    #             init_method=cfg.dist_params.dist_url,
    #             world_size=cfg.dist_params.world_size,
    #             rank=cfg.dist_params.global_rank,)
    #             #timeout=default_timeout,)
    
    # set random seeds
    if cfg.seed is not None:
        logger.info(f'Set random seed to {cfg.seed}, deterministic: 'f'{cfg.deterministic}')
        set_random_seed(cfg.seed, deterministic=cfg.deterministic)
    # with torch.autograd.set_detect_anomaly(True):
    do_train(local_rank, cfg)


if __name__=='__main__':
    # load args
    args = parse_args()
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    args.timestamp = timestamp
    print(args.work_dir, args.tensorboard_dir)
    main(args)