Metric3D / training /mono /datasets /diode_dataset.py
zach
initial commit based on github repo
3ef1661
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
def creat_uv_mesh(H, W):
y, x = np.meshgrid(np.arange(0, H, dtype=np.float), np.arange(0, W, dtype=np.float), indexing='ij')
meshgrid = np.stack((x,y))
ones = np.ones((1,H*W), dtype=np.float)
xy = meshgrid.reshape(2, -1)
return np.concatenate([xy, ones], axis=0)
class DIODEDataset(BaseDataset):
def __init__(self, cfg, phase, **kwargs):
super(DIODEDataset, self).__init__(
cfg=cfg,
phase=phase,
**kwargs)
self.metric_scale = cfg.metric_scale
# meshgrid for depth reprojection
self.xy = creat_uv_mesh(768, 1024)
def get_data_for_test(self, idx: int):
anno = self.annotations['files'][idx]
meta_data = self.load_meta_data(anno)
data_path = self.load_data_path(meta_data)
data_batch = self.load_batch(meta_data, data_path)
# load data
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
ori_curr_intrinsic = meta_data['cam_in']
# get crop size
transform_paras = dict()
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
images=[curr_rgb,], #+ tmpl_rgbs,
labels=[curr_depth, ],
intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
cam_models=[curr_cam_model, ],
transform_paras=transform_paras)
# depth in original size and orignial metric***
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))
filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
ori_curr_intrinsic_mat = self.intrinsics_list2mat(ori_curr_intrinsic)
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
cam_models_stacks = [
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
for i in [2, 4, 8, 16, 32]
]
raw_rgb = torch.from_numpy(curr_rgb)
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))
data = dict(input=rgbs[0],
target=depth_out,
intrinsic=curr_intrinsic_mat,
filename=filename,
dataset=self.data_name,
cam_model=cam_models_stacks,
pad=pad,
scale=scale_ratio,
raw_rgb=raw_rgb,
sample_id=idx,
data_path=meta_data['rgb'],
inv_depth=inv_depth,
normal=curr_normal,
)
return data
# def get_data_for_trainval(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# # curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# # curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# # curr_sem_path = os.path.join(self.sem_root, meta_data['sem']) if self.sem_root is not None and ('sem' in meta_data) and (meta_data['sem'] is not None) else None
# # curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# data_path = self.load_data_path(meta_data)
# data_batch = self.load_batch(meta_data, data_path)
# curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
# # load data
# # curr_intrinsic = meta_data['cam_in']
# # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # # mask the depth
# # curr_depth = curr_depth.squeeze()
# # depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# # curr_depth[~depth_mask] = -1
# # # get semantic labels
# # curr_sem = self.load_sem_label(curr_sem_path, curr_depth)
# # # create camera model
# # curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# # get crop size
# transform_paras = dict(random_crop_size = self.random_crop_size)
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb, ],
# labels=[curr_depth, ],
# intrinsics=[curr_intrinsic,],
# cam_models=[curr_cam_model, ],
# other_labels=[curr_sem, ],
# transform_paras=transform_paras)
# # process sky masks
# sem_mask = other_labels[0].int()
# # clip depth map
# depth_out = self.normalize_depth(depths[0])
# # set the depth in sky region to the maximum depth
# depth_out[sem_mask==142] = -1 #self.depth_normalize[1] - 1e-6
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# #ref_input=rgbs[1:],
# # tmpl_flg=tmpl_annos['w_tmpl'],
# pad=torch.tensor(pad),
# data_type=[self.data_type, ],
# sem_mask=sem_mask.int())
# return data
# def get_data_for_test(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# # load data
# ori_curr_intrinsic = meta_data['cam_in']
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # mask the depth
# curr_depth = curr_depth.squeeze()
# depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# curr_depth[~depth_mask] = -1
# ori_h, ori_w, _ = curr_rgb.shape
# # create camera model
# curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
# # get crop size
# transform_paras = dict()
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb,], #+ tmpl_rgbs,
# labels=[curr_depth, ],
# intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
# cam_models=[curr_cam_model, ],
# transform_paras=transform_paras)
# # depth in original size and orignial metric***
# depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# raw_rgb = torch.from_numpy(curr_rgb)
# # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# pad=pad,
# scale=scale_ratio,
# raw_rgb=raw_rgb,
# sample_id=idx,
# data_path=meta_data['rgb'],
# )
# return data
def load_batch(self, meta_data, data_path):
curr_intrinsic = meta_data['cam_in']
# load rgb/depth
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'])
# get semantic labels
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
# create camera model
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# get normal labels
try:
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], depth=curr_depth, K=curr_intrinsic) # !!! this is diff of BaseDataset
except:
curr_normal = np.zeros_like(curr_rgb)
# get depth mask
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])
curr_depth[~depth_mask] = -1
data_batch = dict(
curr_rgb = curr_rgb,
curr_depth = curr_depth,
curr_sem = curr_sem,
curr_normal = curr_normal,
curr_cam_model=curr_cam_model,
)
return data_batch
def load_norm_label(self, norm_path, H, W, depth, K):
normal = np.load(norm_path)
normal[:,:,1:] *= -1
normal = self.align_normal(normal, depth, K, H, W)
return normal
def process_depth(self, depth, rgb):
depth[depth>150] = 0
depth[depth<0.1] = 0
depth /= self.metric_scale
return depth
def align_normal(self, normal, depth, K, H, W):
# inv K
K = np.array([[K[0], 0 ,K[2]],
[0, K[1], K[3]],
[0, 0, 1]])
inv_K = np.linalg.inv(K)
# reprojection depth to camera points
if H == 768 and W == 1024:
xy = self.xy
else:
print('img size no-equal 768x1024')
xy = creat_uv_mesh(H, W)
points = np.matmul(inv_K[:3, :3], xy).reshape(3, H, W)
points = depth * points
points = points.transpose((1,2,0))
# align normal
orient_mask = np.sum(normal * points, axis=2) > 0
normal[orient_mask] *= -1
return normal
if __name__ == '__main__':
from mmcv.utils import Config
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
dataset_i = DIODEDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
print(dataset_i)