File size: 13,023 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset


def creat_uv_mesh(H, W):
    y, x = np.meshgrid(np.arange(0, H, dtype=np.float), np.arange(0, W, dtype=np.float), indexing='ij')
    meshgrid = np.stack((x,y))
    ones = np.ones((1,H*W), dtype=np.float)
    xy = meshgrid.reshape(2, -1)
    return np.concatenate([xy, ones], axis=0)

class DIODEDataset(BaseDataset):
    def __init__(self, cfg, phase, **kwargs):
        super(DIODEDataset, self).__init__(
            cfg=cfg,
            phase=phase,
            **kwargs)
        self.metric_scale = cfg.metric_scale
        
        # meshgrid for depth reprojection
        self.xy = creat_uv_mesh(768, 1024)

    def get_data_for_test(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path)
        # load data
        curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
        ori_curr_intrinsic = meta_data['cam_in']

        # get crop size
        transform_paras = dict()
        rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb,],  #+ tmpl_rgbs, 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
                                                                   cam_models=[curr_cam_model, ],
                                                                   transform_paras=transform_paras)
        # depth in original size and orignial metric***
        depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
        inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))
        filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
        ori_curr_intrinsic_mat = self.intrinsics_list2mat(ori_curr_intrinsic)

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
        scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]    
        raw_rgb = torch.from_numpy(curr_rgb)
        curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))
        

        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=pad,
                    scale=scale_ratio,
                    raw_rgb=raw_rgb,
                    sample_id=idx,
                    data_path=meta_data['rgb'],
                    inv_depth=inv_depth,
                    normal=curr_normal,
                    )
        return data


    # def get_data_for_trainval(self, idx: int):
    #     anno = self.annotations['files'][idx]
    #     meta_data = self.load_meta_data(anno)
        
    #     # curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
    #     # curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
    #     # curr_sem_path = os.path.join(self.sem_root, meta_data['sem']) if self.sem_root is not None and ('sem' in meta_data) and (meta_data['sem'] is not None)  else None
    #     # curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None)  else None
    #     data_path = self.load_data_path(meta_data)
    #     data_batch = self.load_batch(meta_data, data_path)

    #     curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']

    #     # load data
    #     # curr_intrinsic = meta_data['cam_in']
    #     # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        
    #     # # mask the depth
    #     # curr_depth = curr_depth.squeeze()
    #     # depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
    #     # curr_depth[~depth_mask] = -1
        
        
    #     # # get semantic labels
    #     # curr_sem = self.load_sem_label(curr_sem_path, curr_depth)
    #     # # create camera model
    #     # curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)        
        
    #     # get crop size
    #     transform_paras = dict(random_crop_size = self.random_crop_size)
    #     rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
    #                                                                images=[curr_rgb, ], 
    #                                                                labels=[curr_depth, ], 
    #                                                                intrinsics=[curr_intrinsic,], 
    #                                                                cam_models=[curr_cam_model, ],
    #                                                                other_labels=[curr_sem, ],
    #                                                                transform_paras=transform_paras)
    #     # process sky masks
    #     sem_mask = other_labels[0].int()
        
    #     # clip depth map 
    #     depth_out = self.normalize_depth(depths[0])
    #     # set the depth in sky region to the maximum depth
    #     depth_out[sem_mask==142] = -1 #self.depth_normalize[1] - 1e-6
    #     filename = os.path.basename(meta_data['rgb'])
    #     curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
    #     cam_models_stacks = [
    #         torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
    #         for i in [2, 4, 8, 16, 32] 
    #         ]
    #     pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]        
    #     data = dict(input=rgbs[0],
    #                 target=depth_out,
    #                 intrinsic=curr_intrinsic_mat,
    #                 filename=filename,
    #                 dataset=self.data_name,
    #                 cam_model=cam_models_stacks,
    #                 #ref_input=rgbs[1:],
    #                 # tmpl_flg=tmpl_annos['w_tmpl'],
    #                 pad=torch.tensor(pad),
    #                 data_type=[self.data_type, ],
    #                 sem_mask=sem_mask.int())
    #     return data
    
    # def get_data_for_test(self, idx: int):
    #     anno = self.annotations['files'][idx]
    #     meta_data = self.load_meta_data(anno)
    #     curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
    #     curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
    #     curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None)  else None

    #     # load data
    #     ori_curr_intrinsic = meta_data['cam_in']
    #     curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        
    #     # mask the depth
    #     curr_depth = curr_depth.squeeze()
    #     depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
    #     curr_depth[~depth_mask] = -1
        
    #     ori_h, ori_w, _ = curr_rgb.shape
    #     # create camera model
    #     curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)

    #     # get crop size
    #     transform_paras = dict()
    #     rgbs, depths, intrinsics, cam_models, _,  other_labels, transform_paras = self.img_transforms(
    #                                                                images=[curr_rgb,],  #+ tmpl_rgbs, 
    #                                                                labels=[curr_depth, ], 
    #                                                                intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
    #                                                                cam_models=[curr_cam_model, ],
    #                                                                transform_paras=transform_paras)
    #     # depth in original size and orignial metric***
    #     depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #

    #     filename = os.path.basename(meta_data['rgb'])
    #     curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

    #     pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
    #     scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
    #     cam_models_stacks = [
    #         torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
    #         for i in [2, 4, 8, 16, 32] 
    #         ]    
    #     raw_rgb = torch.from_numpy(curr_rgb)
    #     # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])

    #     data = dict(input=rgbs[0],
    #                 target=depth_out,
    #                 intrinsic=curr_intrinsic_mat,
    #                 filename=filename,
    #                 dataset=self.data_name,
    #                 cam_model=cam_models_stacks,
    #                 pad=pad,
    #                 scale=scale_ratio,
    #                 raw_rgb=raw_rgb,
    #                 sample_id=idx,
    #                 data_path=meta_data['rgb'],
    #                 )
    #     return data
    

    def load_batch(self, meta_data, data_path):
        curr_intrinsic = meta_data['cam_in']
        # load rgb/depth
        curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'])
        # get semantic labels
        curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
        # create camera model
        curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)       
        # get normal labels
        
        try:
            curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], depth=curr_depth, K=curr_intrinsic) # !!! this is diff of BaseDataset
        except:
            curr_normal = np.zeros_like(curr_rgb)
        # get depth mask
        depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])
        curr_depth[~depth_mask] = -1
        data_batch = dict(
            curr_rgb = curr_rgb,
            curr_depth = curr_depth,
            curr_sem = curr_sem,
            curr_normal = curr_normal,
            curr_cam_model=curr_cam_model,
        )
        return data_batch


    def load_norm_label(self, norm_path, H, W, depth, K):
        normal = np.load(norm_path)
        normal[:,:,1:] *= -1
        normal = self.align_normal(normal, depth, K, H, W)

        return normal


    def process_depth(self, depth, rgb):
        depth[depth>150] = 0
        depth[depth<0.1] = 0
        depth /= self.metric_scale
        return depth

    def align_normal(self, normal, depth, K, H, W):
        # inv K
        K = np.array([[K[0], 0 ,K[2]], 
                      [0, K[1], K[3]], 
                      [0, 0, 1]])
        inv_K = np.linalg.inv(K)
        # reprojection depth to camera points
        if H == 768 and W == 1024:
            xy = self.xy
        else:
            print('img size no-equal 768x1024')
            xy = creat_uv_mesh(H, W)
        points = np.matmul(inv_K[:3, :3], xy).reshape(3, H, W)
        points = depth * points
        points = points.transpose((1,2,0))

        # align normal
        orient_mask = np.sum(normal * points, axis=2) > 0
        normal[orient_mask] *= -1

        return normal


if __name__ == '__main__':
    from mmcv.utils import Config 
    cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
    dataset_i = DIODEDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
    print(dataset_i)