File size: 13,023 Bytes
3ef1661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
def creat_uv_mesh(H, W):
y, x = np.meshgrid(np.arange(0, H, dtype=np.float), np.arange(0, W, dtype=np.float), indexing='ij')
meshgrid = np.stack((x,y))
ones = np.ones((1,H*W), dtype=np.float)
xy = meshgrid.reshape(2, -1)
return np.concatenate([xy, ones], axis=0)
class DIODEDataset(BaseDataset):
def __init__(self, cfg, phase, **kwargs):
super(DIODEDataset, self).__init__(
cfg=cfg,
phase=phase,
**kwargs)
self.metric_scale = cfg.metric_scale
# meshgrid for depth reprojection
self.xy = creat_uv_mesh(768, 1024)
def get_data_for_test(self, idx: int):
anno = self.annotations['files'][idx]
meta_data = self.load_meta_data(anno)
data_path = self.load_data_path(meta_data)
data_batch = self.load_batch(meta_data, data_path)
# load data
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
ori_curr_intrinsic = meta_data['cam_in']
# get crop size
transform_paras = dict()
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
images=[curr_rgb,], #+ tmpl_rgbs,
labels=[curr_depth, ],
intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
cam_models=[curr_cam_model, ],
transform_paras=transform_paras)
# depth in original size and orignial metric***
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))
filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
ori_curr_intrinsic_mat = self.intrinsics_list2mat(ori_curr_intrinsic)
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
cam_models_stacks = [
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
for i in [2, 4, 8, 16, 32]
]
raw_rgb = torch.from_numpy(curr_rgb)
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))
data = dict(input=rgbs[0],
target=depth_out,
intrinsic=curr_intrinsic_mat,
filename=filename,
dataset=self.data_name,
cam_model=cam_models_stacks,
pad=pad,
scale=scale_ratio,
raw_rgb=raw_rgb,
sample_id=idx,
data_path=meta_data['rgb'],
inv_depth=inv_depth,
normal=curr_normal,
)
return data
# def get_data_for_trainval(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# # curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# # curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# # curr_sem_path = os.path.join(self.sem_root, meta_data['sem']) if self.sem_root is not None and ('sem' in meta_data) and (meta_data['sem'] is not None) else None
# # curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# data_path = self.load_data_path(meta_data)
# data_batch = self.load_batch(meta_data, data_path)
# curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
# # load data
# # curr_intrinsic = meta_data['cam_in']
# # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # # mask the depth
# # curr_depth = curr_depth.squeeze()
# # depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# # curr_depth[~depth_mask] = -1
# # # get semantic labels
# # curr_sem = self.load_sem_label(curr_sem_path, curr_depth)
# # # create camera model
# # curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# # get crop size
# transform_paras = dict(random_crop_size = self.random_crop_size)
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb, ],
# labels=[curr_depth, ],
# intrinsics=[curr_intrinsic,],
# cam_models=[curr_cam_model, ],
# other_labels=[curr_sem, ],
# transform_paras=transform_paras)
# # process sky masks
# sem_mask = other_labels[0].int()
# # clip depth map
# depth_out = self.normalize_depth(depths[0])
# # set the depth in sky region to the maximum depth
# depth_out[sem_mask==142] = -1 #self.depth_normalize[1] - 1e-6
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# #ref_input=rgbs[1:],
# # tmpl_flg=tmpl_annos['w_tmpl'],
# pad=torch.tensor(pad),
# data_type=[self.data_type, ],
# sem_mask=sem_mask.int())
# return data
# def get_data_for_test(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# # load data
# ori_curr_intrinsic = meta_data['cam_in']
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # mask the depth
# curr_depth = curr_depth.squeeze()
# depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# curr_depth[~depth_mask] = -1
# ori_h, ori_w, _ = curr_rgb.shape
# # create camera model
# curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
# # get crop size
# transform_paras = dict()
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb,], #+ tmpl_rgbs,
# labels=[curr_depth, ],
# intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
# cam_models=[curr_cam_model, ],
# transform_paras=transform_paras)
# # depth in original size and orignial metric***
# depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# raw_rgb = torch.from_numpy(curr_rgb)
# # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# pad=pad,
# scale=scale_ratio,
# raw_rgb=raw_rgb,
# sample_id=idx,
# data_path=meta_data['rgb'],
# )
# return data
def load_batch(self, meta_data, data_path):
curr_intrinsic = meta_data['cam_in']
# load rgb/depth
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'])
# get semantic labels
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
# create camera model
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# get normal labels
try:
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], depth=curr_depth, K=curr_intrinsic) # !!! this is diff of BaseDataset
except:
curr_normal = np.zeros_like(curr_rgb)
# get depth mask
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])
curr_depth[~depth_mask] = -1
data_batch = dict(
curr_rgb = curr_rgb,
curr_depth = curr_depth,
curr_sem = curr_sem,
curr_normal = curr_normal,
curr_cam_model=curr_cam_model,
)
return data_batch
def load_norm_label(self, norm_path, H, W, depth, K):
normal = np.load(norm_path)
normal[:,:,1:] *= -1
normal = self.align_normal(normal, depth, K, H, W)
return normal
def process_depth(self, depth, rgb):
depth[depth>150] = 0
depth[depth<0.1] = 0
depth /= self.metric_scale
return depth
def align_normal(self, normal, depth, K, H, W):
# inv K
K = np.array([[K[0], 0 ,K[2]],
[0, K[1], K[3]],
[0, 0, 1]])
inv_K = np.linalg.inv(K)
# reprojection depth to camera points
if H == 768 and W == 1024:
xy = self.xy
else:
print('img size no-equal 768x1024')
xy = creat_uv_mesh(H, W)
points = np.matmul(inv_K[:3, :3], xy).reshape(3, H, W)
points = depth * points
points = points.transpose((1,2,0))
# align normal
orient_mask = np.sum(normal * points, axis=2) > 0
normal[orient_mask] *= -1
return normal
if __name__ == '__main__':
from mmcv.utils import Config
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
dataset_i = DIODEDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
print(dataset_i)
|