swin-food101-jpqd-1to2r1-epo7-finetuned-student

This model is a fine-tuned version of skylord/swin-finetuned-food101 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1947
  • Accuracy: 0.9213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2342 0.42 500 0.1993 0.9099
0.2891 0.84 1000 0.1912 0.9137
67.4995 1.27 1500 66.4760 0.8035
109.8398 1.69 2000 109.5154 0.4499
0.6337 2.11 2500 0.4865 0.8826
0.6605 2.54 3000 0.3551 0.9013
0.4013 2.96 3500 0.3176 0.9044
0.3949 3.38 4000 0.2839 0.9079
0.4632 3.8 4500 0.2652 0.9118
0.3717 4.23 5000 0.2459 0.9147
0.3308 4.65 5500 0.2439 0.9159
0.4232 5.07 6000 0.2259 0.9169
0.3426 5.49 6500 0.2147 0.9199
0.331 5.92 7000 0.2086 0.9189
0.3032 6.34 7500 0.2036 0.9201
0.3393 6.76 8000 0.1978 0.9204

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
13
Safetensors
Model size
171M params
Tensor type
I64
·
F32
·
I32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train yujiepan/internal.swin-base-food101-int8-structured30.56

Evaluation results