BenchX Retrained Models
Collection
9 items
•
Updated
•
1
A retrained M-FLAG model for benchmarking medical vision-language pre-training methods within the BenchX framework.
Please follow the instruction to install BenchX.
To fine-tune M-FLAG for classification, run this command:
python bin/train.py config/classification/<dataset_name>/mflag.yml
To fine-tune M-FLAG for segmentation, run this command:
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/mflag.yml
To fine-tune M-FLAG for report generation, run this command:
python bin/train.py config/report_generation/<dataset_name>/mflag.yml
To evaluate fine-tuned M-FLAG models, run:
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/mflag.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/mflag.yml <path_to_checkpoint>
@inproceedings{huang2021M-FLAG,
title={M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization},
author={Liu, Che and Cheng, Sibo and Chen, Chen and Qiao, Mengyun and Zhang, Weitong and Shah, Anand and Bai, Wenjia and Arcucci, Rossella},
booktitle={Proceedings of MICCAI},
pages={637--647},
year={2023},
}
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}