wav2vec2-bert-CV16-en-libri-cv

This model is a fine-tuned version of ylacombe/wav2vec2-bert-CV16-en-libri on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - EN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2168
  • Wer: 0.1352
  • Cer: 0.0525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 108
  • total_eval_batch_size: 36
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 15000
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3302 0.05 500 0.4543 0.2333 0.0889
0.2579 0.1 1000 0.4172 0.2213 0.0832
0.2527 0.15 1500 0.3999 0.2142 0.0799
0.269 0.2 2000 0.3763 0.2049 0.0768
0.229 0.24 2500 0.3629 0.2029 0.0753
0.2286 0.29 3000 0.3494 0.1972 0.0733
0.2422 0.34 3500 0.3365 0.1929 0.0720
0.1989 0.39 4000 0.3362 0.1900 0.0711
0.2036 0.44 4500 0.3282 0.1871 0.0696
0.198 0.49 5000 0.3156 0.1803 0.0677
0.1757 0.54 5500 0.3069 0.1797 0.0682
0.1966 0.59 6000 0.2984 0.1786 0.0663
0.1924 0.64 6500 0.3014 0.1795 0.0676
0.19 0.68 7000 0.3059 0.1741 0.0656
0.1723 0.73 7500 0.3036 0.1758 0.0673
0.1688 0.78 8000 0.2990 0.1749 0.0670
0.1776 0.83 8500 0.2984 0.1742 0.0663
0.151 0.88 9000 0.3027 0.1707 0.0651
0.1609 0.93 9500 0.3001 0.1738 0.0667
0.1735 0.98 10000 0.3007 0.1748 0.0667
0.1355 1.03 10500 0.2953 0.1716 0.0665
0.1538 1.08 11000 0.2872 0.1733 0.0672
0.1448 1.12 11500 0.2927 0.1695 0.0657
0.1686 1.17 12000 0.2864 0.1731 0.0673
0.1506 1.22 12500 0.2891 0.1734 0.0667
0.1621 1.27 13000 0.2837 0.1722 0.0669
0.1573 1.32 13500 0.2792 0.1728 0.0660
0.1566 1.37 14000 0.2747 0.1702 0.0661
0.1528 1.42 14500 0.2781 0.1754 0.0673
0.153 1.47 15000 0.2900 0.1788 0.0692
0.1575 1.52 15500 0.2713 0.1758 0.0670
0.1543 1.56 16000 0.2846 0.1728 0.0666
0.1354 1.61 16500 0.2781 0.1696 0.0657
0.1246 1.66 17000 0.2941 0.1729 0.0674
0.1538 1.71 17500 0.2803 0.1707 0.0662
0.143 1.76 18000 0.2705 0.1669 0.0650
0.1505 1.81 18500 0.2632 0.1687 0.0653
0.1415 1.86 19000 0.2623 0.1651 0.0636
0.1402 1.91 19500 0.2607 0.1668 0.0647
0.1354 1.96 20000 0.2649 0.1643 0.0635
0.1234 2.0 20500 0.2684 0.1616 0.0636
0.129 2.05 21000 0.2589 0.1595 0.0624
0.1198 2.1 21500 0.2629 0.1629 0.0631
0.1083 2.15 22000 0.2608 0.1604 0.0627
0.1446 2.2 22500 0.2598 0.1614 0.0629
0.1315 2.25 23000 0.2681 0.1640 0.0643
0.1218 2.3 23500 0.2616 0.1607 0.0639
0.1167 2.35 24000 0.2732 0.1599 0.0627
0.1009 2.4 24500 0.2566 0.1600 0.0627
0.1133 2.44 25000 0.2533 0.1566 0.0614
0.1135 2.49 25500 0.2470 0.1561 0.0606
0.1042 2.54 26000 0.2508 0.1546 0.0604
0.1238 2.59 26500 0.2568 0.1565 0.0616
0.1178 2.64 27000 0.2564 0.1574 0.0615
0.1207 2.69 27500 0.2456 0.1552 0.0605
0.1112 2.74 28000 0.2434 0.1516 0.0595
0.1097 2.79 28500 0.2467 0.1550 0.0605
0.1253 2.84 29000 0.2428 0.1541 0.0600
0.1172 2.88 29500 0.2399 0.1513 0.0592
0.12 2.93 30000 0.2393 0.1518 0.0589
0.0976 2.98 30500 0.2442 0.1520 0.0596
0.1422 3.03 31000 0.2398 0.1503 0.0588
0.1285 3.08 31500 0.2446 0.1518 0.0591
0.122 3.13 32000 0.2401 0.1503 0.0587
0.1132 3.18 32500 0.2437 0.1514 0.0591
0.1275 3.23 33000 0.2466 0.1485 0.0584
0.1299 3.28 33500 0.2380 0.1463 0.0571
0.1129 3.32 34000 0.2416 0.1472 0.0576
0.1367 3.37 34500 0.2418 0.1479 0.0581
0.1166 3.42 35000 0.2418 0.1458 0.0573
0.1264 3.47 35500 0.2349 0.1449 0.0569
0.1325 3.52 36000 0.2332 0.1458 0.0567
0.1208 3.57 36500 0.2372 0.1469 0.0578
0.1309 3.62 37000 0.2354 0.1455 0.0570
0.1303 3.67 37500 0.2281 0.1435 0.0559
0.1193 3.72 38000 0.2306 0.1438 0.0563
0.1148 3.76 38500 0.2259 0.1439 0.0558
0.1066 3.81 39000 0.2293 0.1421 0.0558
0.0899 3.86 39500 0.2266 0.1408 0.0552
0.123 3.91 40000 0.2254 0.1419 0.0555
0.1162 3.96 40500 0.2251 0.1422 0.0557
0.0856 4.01 41000 0.2253 0.1401 0.0549
0.0983 4.06 41500 0.2258 0.1389 0.0547
0.0893 4.11 42000 0.2260 0.1406 0.0547
0.0892 4.16 42500 0.2272 0.1391 0.0544
0.0761 4.2 43000 0.2301 0.1396 0.0547
0.0931 4.25 43500 0.2259 0.1377 0.0538
0.081 4.3 44000 0.2221 0.1389 0.0540
0.0878 4.35 44500 0.2232 0.1383 0.0538
0.0837 4.4 45000 0.2258 0.1381 0.0540
0.0917 4.45 45500 0.2211 0.1371 0.0535
0.0736 4.5 46000 0.2226 0.1364 0.0534
0.0728 4.55 46500 0.2218 0.1358 0.0531
0.0824 4.6 47000 0.2205 0.1365 0.0533
0.0794 4.64 47500 0.2198 0.1359 0.0529
0.0823 4.69 48000 0.2199 0.1354 0.0527
0.0849 4.74 48500 0.2176 0.1348 0.0525
0.095 4.79 49000 0.2185 0.1354 0.0529
0.0951 4.84 49500 0.2163 0.1354 0.0527
0.0902 4.89 50000 0.2163 0.1350 0.0525
0.066 4.94 50500 0.2167 0.1350 0.0525
0.0776 4.99 51000 0.2169 0.1351 0.0524

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
53
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ylacombe/wav2vec2-bert-CV16-en-libri-cv

Finetuned
(1)
this model