|
--- |
|
license: cc-by-4.0 |
|
base_model: paust/pko-t5-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: OndeviceAI-T5-base |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# OndeviceAI-T5-base |
|
|
|
This model is a fine-tuned version of [paust/pko-t5-base](https://huggingface.co/paust/pko-t5-base) on the None dataset. |
|
|
|
## How to use |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from typing import List |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yeye776/OndeviceAI-T5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("yeye776/OndeviceAI-T5-base") |
|
|
|
prompt = "분류 및 인식해줘 :" |
|
def prepare_input(question: str): |
|
inputs = f"{prompt} {question}" |
|
input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids |
|
return input_ids |
|
|
|
def inference(question: str) -> str: |
|
input_data = prepare_input(question=question) |
|
input_data = input_data.to(model.device) |
|
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=1024) |
|
|
|
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) |
|
|
|
return result |
|
|
|
inference("안방 조명 켜줘") |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0007 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|