|
--- |
|
language: |
|
- ko |
|
- ja |
|
base_model: facebook/mbart-large-50-many-to-many-mmt |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: tst-translation-output |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tst-translation-output |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8968 |
|
- Bleu: 9.457 |
|
- Gen Len: 17.4895 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:-------:|:-------:|:---------------:| |
|
| 1.1751 | 0.47 | 3000 | 7.6766 | 17.4644 | 1.1289 | |
|
| 1.0268 | 0.93 | 6000 | 9.2277 | 17.7668 | 0.9895 | |
|
| 0.8075 | 1.4 | 9000 | 9.1197 | 17.6811 | 0.9457 | |
|
| 0.8082 | 1.87 | 12000 | 8.4837 | 17.4826 | 0.9053 | |
|
| 0.5841 | 2.33 | 15000 | 9.8887 | 17.5166 | 0.9303 | |
|
| 0.6142 | 2.8 | 18000 | 9.547 | 17.426 | 0.9142 | |
|
| 0.4119 | 3.26 | 21000 | 9.5055 | 17.3378 | 0.9879 | |
|
| 0.2837 | 7.46 | 24000 | 11.0549 | 17.2982 | 1.0063 | |
|
| 0.1792 | 8.4 | 27000 | 8.9031 | 17.2801 | 1.0856 | |
|
| 0.1204 | 9.33 | 30000 | 1.1643 | 11.3498 | 17.2986 | |
|
| 0.0826 | 10.26 | 33000 | 1.2319 | 10.796 | 17.3627 | |
|
| 0.0617 | 11.19 | 36000 | 1.2785 | 10.6211 | 17.3748 | |
|
| 0.0523 | 12.13 | 39000 | 1.3217 | 9.8848 | 17.3358 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|