yeniguno's picture
End of training
807e394 verified
|
raw
history blame
2.44 kB
metadata
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-ner-turkish-cased
    results: []

bert-ner-turkish-cased

This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0987
  • Precision: 0.9112
  • Recall: 0.9364
  • F1: 0.9236
  • Accuracy: 0.9600

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1351 1.0 1527 0.1158 0.8592 0.9070 0.8825 0.9517
0.1088 2.0 3054 0.1045 0.8787 0.9336 0.9053 0.9574
0.1016 3.0 4581 0.0993 0.8901 0.9280 0.9086 0.9576
0.1102 4.0 6108 0.0963 0.8991 0.9277 0.9132 0.9587
0.0877 5.0 7635 0.0953 0.9046 0.9292 0.9167 0.9584
0.0933 6.0 9162 0.0939 0.9036 0.9321 0.9176 0.9593
0.0827 7.0 10689 0.0967 0.8986 0.9398 0.9188 0.9605
0.0933 8.0 12216 0.0949 0.9122 0.9292 0.9206 0.9593
0.084 9.0 13743 0.0987 0.9112 0.9364 0.9236 0.9600

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0