yemen2016's picture
End of training
95eabb0 verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: vesteinn/DanskBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: danskbert_indirect_speech
    results: []

danskbert_indirect_speech

This model is a fine-tuned version of vesteinn/DanskBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.6570
  • Precision: 0.6586
  • Recall: 0.6570
  • F1: 0.6525
  • Loss: 0.8216

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 1.0 13 0.5457 0.5231 0.5457 0.4294 1.0285
No log 2.0 26 0.4100 0.1876 0.4100 0.2461 1.0252
No log 3.0 39 0.5023 0.6704 0.5023 0.4244 0.8830
No log 4.0 52 0.4991 0.7051 0.4991 0.4072 1.2035
No log 5.0 65 0.4291 0.7156 0.4291 0.2829 1.3921
No log 6.0 78 0.5491 0.7090 0.5491 0.4926 0.9938
No log 7.0 91 0.5763 0.7044 0.5763 0.5365 1.0815
No log 8.0 104 0.6624 0.6520 0.6624 0.6503 0.7027
No log 9.0 117 0.6374 0.6696 0.6374 0.6308 0.9327
No log 10.0 130 0.6549 0.6680 0.6549 0.6484 0.7493
No log 11.0 143 0.6552 0.6597 0.6552 0.6499 0.7772
No log 12.0 156 0.6604 0.6500 0.6604 0.6536 0.7496
No log 13.0 169 0.6556 0.6643 0.6556 0.6502 0.8145
No log 14.0 182 0.6588 0.6591 0.6588 0.6536 0.7831
No log 15.0 195 0.6622 0.6604 0.6622 0.6572 0.7797
No log 16.0 208 0.6588 0.6661 0.6588 0.6532 0.8084
No log 17.0 221 0.6624 0.6672 0.6624 0.6578 0.8129
No log 18.0 234 0.6597 0.6617 0.6597 0.6550 0.8171
No log 18.48 240 0.6570 0.6586 0.6570 0.6525 0.8216

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Tokenizers 0.21.0