SparkNV-Voice / README.md
yasserrmd's picture
Update README.md
df86624 verified
---
license: cc-by-nc-sa-4.0
tags:
- spark-tts
- text-to-speech
- nonverbal
- emotional
- audio
- speech-synthesis
- huggingface
language:
- en
model-index:
- name: SparkNV-Voice
results: []
datasets:
- deepvk/NonverbalTTS
base_model:
- SparkAudio/Spark-TTS-0.5B
---
# 🔊 SparkNV-Voice
<img src="banner.png" width="800" />
**SparkNV-Voice** is a fine-tuned version of the [Spark-TTS](https://huggingface.co/suno-ai/spark-tts) model trained on the [NonverbalTTS](https://huggingface.co/datasets/deepvk/NonverbalTTS) dataset. It enables expressive speech synthesis with **nonverbal cues** (like laughter, sighs, sneezing, etc.) and rich emotional tone.
Built for applications that require **natural, human-like vocalization**, this model produces speech with **semantic tokens** and **global prosody control** using BiCodec detokenization.
---
## 🧾 Model Details
- **Base**: `suno-ai/spark-tts`
- **Dataset**: [`deepvk/NonverbalTTS`](https://huggingface.co/datasets/deepvk/NonverbalTTS)
- **Architecture**: Causal Language Model + BiCodec for audio token generation
- **Language**: English
- **Voice**: Single-speaker (no multi-speaker conditioning)
---
## 🛠 Installation
To run this model, install the required dependencies:
```bash
pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl triton cut_cross_entropy unsloth_zoo
pip install sentencepiece protobuf "datasets>=3.4.1,<4.0.0" "huggingface_hub>=0.34.0" hf_transfer
pip install --no-deps unsloth
git clone https://github.com/SparkAudio/Spark-TTS
pip install omegaconf einx
````
---
## 🚀 Inference Code
```python
import torch
import re
import numpy as np
from typing import Dict, Any
import torchaudio.transforms as T
from unsloth import FastModel
import sys
sys.path.append('Spark-TTS')
from sparktts.models.audio_tokenizer import BiCodecTokenizer
from huggingface_hub import snapshot_download
# Download model and code
snapshot_download("yasserrmd/SparkNV-Voice", local_dir = "SparkNV-Voice")
max_seq_length = 2048 # Choose any for long context!
model, tokenizer = FastModel.from_pretrained(
model_name = "SparkNV-Voice",
max_seq_length = max_seq_length,
dtype = torch.float32, # Spark seems to only work on float32 for now
full_finetuning = True, # We support full finetuning now!
load_in_4bit = False,
#token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
FastModel.for_inference(model) # Enable native 2x faster inference
audio_tokenizer = BiCodecTokenizer("SparkNV-Voice", "cuda")
audio_tokenizer.model.to("cuda")
input_text = "Hey there, my name is Yasser, and I'm a 🌬️ speech generation model that can sound like a person."
chosen_voice = None # None for single-speaker
@torch.inference_mode()
def generate_speech_from_text(
text: str,
temperature: float = 0.8, # Generation temperature
top_k: int = 50, # Generation top_k
top_p: float = 1, # Generation top_p
max_new_audio_tokens: int = 2048, # Max tokens for audio part
device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
) -> np.ndarray:
"""
Generates speech audio from text using default voice control parameters.
Args:
text (str): The text input to be converted to speech.
temperature (float): Sampling temperature for generation.
top_k (int): Top-k sampling parameter.
top_p (float): Top-p (nucleus) sampling parameter.
max_new_audio_tokens (int): Max number of new tokens to generate (limits audio length).
device (torch.device): Device to run inference on.
Returns:
np.ndarray: Generated waveform as a NumPy array.
"""
torch.compiler.reset()
prompt = "".join([
"<|task_tts|>",
"<|start_content|>",
text,
"<|end_content|>",
"<|start_global_token|>"
])
model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
print("Generating token sequence...")
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_audio_tokens, # Limit generation length
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id, # Stop token
pad_token_id=tokenizer.pad_token_id # Use models pad token id
)
print("Token sequence generated.")
generated_ids_trimmed = generated_ids[:, model_inputs.input_ids.shape[1]:]
predicts_text = tokenizer.batch_decode(generated_ids_trimmed, skip_special_tokens=False)[0]
# print(f"\nGenerated Text (for parsing):\n{predicts_text}\n") # Debugging
# Extract semantic token IDs using regex
semantic_matches = re.findall(r"<\|bicodec_semantic_(\d+)\|>", predicts_text)
if not semantic_matches:
print("Warning: No semantic tokens found in the generated output.")
# Handle appropriately - perhaps return silence or raise error
return np.array([], dtype=np.float32)
pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches]).long().unsqueeze(0) # Add batch dim
# Extract global token IDs using regex (assuming controllable mode also generates these)
global_matches = re.findall(r"<\|bicodec_global_(\d+)\|>", predicts_text)
if not global_matches:
print("Warning: No global tokens found in the generated output (controllable mode). Might use defaults or fail.")
pred_global_ids = torch.zeros((1, 1), dtype=torch.long)
else:
pred_global_ids = torch.tensor([int(token) for token in global_matches]).long().unsqueeze(0) # Add batch dim
pred_global_ids = pred_global_ids.unsqueeze(0) # Shape becomes (1, 1, N_global)
print(f"Found {pred_semantic_ids.shape[1]} semantic tokens.")
print(f"Found {pred_global_ids.shape[2]} global tokens.")
# 5. Detokenize using BiCodecTokenizer
print("Detokenizing audio tokens...")
# Ensure audio_tokenizer and its internal model are on the correct device
audio_tokenizer.device = device
audio_tokenizer.model.to(device)
# Squeeze the extra dimension from global tokens as seen in SparkTTS example
wav_np = audio_tokenizer.detokenize(
pred_global_ids.to(device).squeeze(0), # Shape (1, N_global)
pred_semantic_ids.to(device) # Shape (1, N_semantic)
)
print("Detokenization complete.")
return wav_np
if __name__ == "__main__":
print(f"Generating speech for: '{input_text}'")
text = f"{chosen_voice}: " + input_text if chosen_voice else input_text
generated_waveform = generate_speech_from_text(input_text)
if generated_waveform.size > 0:
import soundfile as sf
output_filename = "generated_speech_controllable.wav"
sample_rate = audio_tokenizer.config.get("sample_rate", 16000)
sf.write(output_filename, generated_waveform, sample_rate)
print(f"Audio saved to {output_filename}")
# Optional: Play in notebook
from IPython.display import Audio, display
display(Audio(generated_waveform, rate=sample_rate))
else:
print("Audio generation failed (no tokens found?).")
````
---
## 🧠 Dataset Highlights: `NonverbalTTS`
* 17+ hours of annotated emotional & nonverbal English speech
* Automatic + human-validated labels
* Sources: VoxCeleb, Expresso
* Paper: [arXiv:2507.13155](https://arxiv.org/abs/2507.13155)
---
## 📜 License
This model is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.
---
## 🤝 Credits
* Base model: [`suno-ai/spark-tts`](https://huggingface.co/suno-ai/spark-tts)
* Dataset: [`deepvk/NonverbalTTS`](https://huggingface.co/datasets/deepvk/NonverbalTTS)
* Author: [`@yasserrmd`](https://huggingface.co/yasserrmd)
---
## 💬 Feedback & Contributions
Open a discussion or issue on this repo. Contributions are welcome!