monobert / README.md
bpiwowar's picture
Add model
60ff7a4
|
raw
history blame
1.1 kB
metadata
library_name: xpmir

monoBERT trained on MS-Marco

Passage Re-ranking with BERT (Rodrigo Nogueira, Kyunghyun Cho). 2019. https://arxiv.org/abs/1901.04085

This model has been trained on MsMarco v1

Using the model

The model can be loaded with experimaestro IR

from xpmir.models import AutoModel

# Model that can be re-used in experiments
model = AutoModel.load_from_hf_hub("xpmir/monobert")

# Use this if you want to actually use the model
model = AutoModel.load_from_hf_hub("xpmir/monobert", as_instance=True)
model.initialize()
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...")

Results

Dataset AP P@20 RR RR@10 nDCG nDCG@10 nDCG@20
msmarco_dev 0.3563 0.0367 0.3611 0.3515 0.4626 0.4127 0.4344
trec2019 0.4971 0.7163 0.9535 0.9535 0.6909 0.7081 0.6820
trec2020 0.4763 0.6120 0.9093 0.9080 0.6797 0.6816 0.6540