SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v04
This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE_v04. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/ModernBERT-SimCSE_v04
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v04")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7847 |
spearman_cosine | 0.7871 |
pearson_euclidean | 0.7259 |
spearman_euclidean | 0.7209 |
pearson_manhattan | 0.7252 |
spearman_manhattan | 0.7203 |
pearson_dot | 0.621 |
spearman_dot | 0.6255 |
pearson_max | 0.7847 |
spearman_max | 0.7871 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.69 tokens
- max: 31 tokens
- min: 7 tokens
- mean: 12.56 tokens
- max: 27 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score 비행기가 이륙하고 있다.
비행기가 이륙하고 있다.
1.0
한 남자가 큰 플루트를 연주하고 있다.
남자가 플루트를 연주하고 있다.
0.76
한 남자가 피자에 치즈를 뿌려놓고 있다.
한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 18.89 tokens
- max: 51 tokens
- min: 5 tokens
- mean: 18.92 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 안전모를 가진 한 남자가 춤을 추고 있다.
안전모를 쓴 한 남자가 춤을 추고 있다.
1.0
어린아이가 말을 타고 있다.
아이가 말을 타고 있다.
0.95
한 남자가 뱀에게 쥐를 먹이고 있다.
남자가 뱀에게 쥐를 먹이고 있다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 1e-05num_train_epochs
: 10.0warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v04hub_strategy
: checkpointbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v04hub_strategy
: checkpointhub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
---|---|---|---|---|
0.2228 | 10 | 0.0285 | - | - |
0.4457 | 20 | 0.0396 | - | - |
0.6685 | 30 | 0.0396 | 0.0376 | 0.7647 |
0.8914 | 40 | 0.0594 | - | - |
1.1337 | 50 | 0.0438 | - | - |
1.3565 | 60 | 0.0302 | 0.0358 | 0.7723 |
1.5794 | 70 | 0.0398 | - | - |
1.8022 | 80 | 0.0457 | - | - |
2.0446 | 90 | 0.0464 | 0.0347 | 0.7805 |
2.2674 | 100 | 0.026 | - | - |
2.4903 | 110 | 0.0331 | - | - |
2.7131 | 120 | 0.0318 | 0.0329 | 0.7837 |
2.9359 | 130 | 0.0399 | - | - |
3.1783 | 140 | 0.0264 | - | - |
3.4011 | 150 | 0.0268 | 0.0332 | 0.7884 |
3.6240 | 160 | 0.0241 | - | - |
3.8468 | 170 | 0.0309 | - | - |
4.0891 | 180 | 0.0263 | 0.0326 | 0.7918 |
4.3120 | 190 | 0.0164 | - | - |
4.5348 | 200 | 0.0226 | - | - |
4.7577 | 210 | 0.0196 | 0.0314 | 0.7896 |
4.9805 | 220 | 0.0217 | - | - |
5.2228 | 230 | 0.0134 | - | - |
5.4457 | 240 | 0.0157 | 0.0320 | 0.7911 |
5.6685 | 250 | 0.0136 | - | - |
5.8914 | 260 | 0.0143 | - | - |
6.1337 | 270 | 0.0114 | 0.0322 | 0.7907 |
6.3565 | 280 | 0.0077 | - | - |
6.5794 | 290 | 0.0116 | - | - |
6.8022 | 300 | 0.0087 | 0.0313 | 0.7868 |
7.0446 | 310 | 0.0088 | - | - |
7.2674 | 320 | 0.0048 | - | - |
7.4903 | 330 | 0.0068 | 0.0317 | 0.7895 |
7.7131 | 340 | 0.006 | - | - |
7.9359 | 350 | 0.0051 | - | - |
8.1783 | 360 | 0.0039 | 0.0323 | 0.7882 |
8.4011 | 370 | 0.0036 | - | - |
8.6240 | 380 | 0.0045 | - | - |
8.8468 | 390 | 0.0032 | 0.0317 | 0.7841 |
9.0891 | 400 | 0.0031 | - | - |
9.3120 | 410 | 0.0021 | - | - |
9.5348 | 420 | 0.0029 | 0.0323 | 0.7871 |
9.7577 | 430 | 0.0023 | - | - |
9.9805 | 440 | 0.0027 | - | - |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for x2bee/ModernBERT-SimCSE-multitask_v04
Base model
answerdotai/ModernBERT-base
Finetuned
CocoRoF/ModernBERT-SimCSE_v04
Evaluation results
- Pearson Cosine on sts devself-reported0.785
- Spearman Cosine on sts devself-reported0.787
- Pearson Euclidean on sts devself-reported0.726
- Spearman Euclidean on sts devself-reported0.721
- Pearson Manhattan on sts devself-reported0.725
- Spearman Manhattan on sts devself-reported0.720
- Pearson Dot on sts devself-reported0.621
- Spearman Dot on sts devself-reported0.625
- Pearson Max on sts devself-reported0.785
- Spearman Max on sts devself-reported0.787