SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v04

This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE_v04. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: CocoRoF/ModernBERT-SimCSE_v04
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v04")
# Run inference
sentences = [
    '버스가 바쁜 길을 따라 운전한다.',
    '녹색 버스가 도로를 따라 내려간다.',
    '그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7847
spearman_cosine 0.7871
pearson_euclidean 0.7259
spearman_euclidean 0.7209
pearson_manhattan 0.7252
spearman_manhattan 0.7203
pearson_dot 0.621
spearman_dot 0.6255
pearson_max 0.7847
spearman_max 0.7871

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 12.69 tokens
    • max: 31 tokens
    • min: 7 tokens
    • mean: 12.56 tokens
    • max: 27 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    비행기가 이륙하고 있다. 비행기가 이륙하고 있다. 1.0
    한 남자가 큰 플루트를 연주하고 있다. 남자가 플루트를 연주하고 있다. 0.76
    한 남자가 피자에 치즈를 뿌려놓고 있다. 한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 18.89 tokens
    • max: 51 tokens
    • min: 5 tokens
    • mean: 18.92 tokens
    • max: 50 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    안전모를 가진 한 남자가 춤을 추고 있다. 안전모를 쓴 한 남자가 춤을 추고 있다. 1.0
    어린아이가 말을 타고 있다. 아이가 말을 타고 있다. 0.95
    한 남자가 뱀에게 쥐를 먹이고 있다. 남자가 뱀에게 쥐를 먹이고 있다. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • overwrite_output_dir: True
  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 1e-05
  • num_train_epochs: 10.0
  • warmup_ratio: 0.1
  • push_to_hub: True
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v04
  • hub_strategy: checkpoint
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: True
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v04
  • hub_strategy: checkpoint
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts_dev_spearman_max
0.2228 10 0.0285 - -
0.4457 20 0.0396 - -
0.6685 30 0.0396 0.0376 0.7647
0.8914 40 0.0594 - -
1.1337 50 0.0438 - -
1.3565 60 0.0302 0.0358 0.7723
1.5794 70 0.0398 - -
1.8022 80 0.0457 - -
2.0446 90 0.0464 0.0347 0.7805
2.2674 100 0.026 - -
2.4903 110 0.0331 - -
2.7131 120 0.0318 0.0329 0.7837
2.9359 130 0.0399 - -
3.1783 140 0.0264 - -
3.4011 150 0.0268 0.0332 0.7884
3.6240 160 0.0241 - -
3.8468 170 0.0309 - -
4.0891 180 0.0263 0.0326 0.7918
4.3120 190 0.0164 - -
4.5348 200 0.0226 - -
4.7577 210 0.0196 0.0314 0.7896
4.9805 220 0.0217 - -
5.2228 230 0.0134 - -
5.4457 240 0.0157 0.0320 0.7911
5.6685 250 0.0136 - -
5.8914 260 0.0143 - -
6.1337 270 0.0114 0.0322 0.7907
6.3565 280 0.0077 - -
6.5794 290 0.0116 - -
6.8022 300 0.0087 0.0313 0.7868
7.0446 310 0.0088 - -
7.2674 320 0.0048 - -
7.4903 330 0.0068 0.0317 0.7895
7.7131 340 0.006 - -
7.9359 350 0.0051 - -
8.1783 360 0.0039 0.0323 0.7882
8.4011 370 0.0036 - -
8.6240 380 0.0045 - -
8.8468 390 0.0032 0.0317 0.7841
9.0891 400 0.0031 - -
9.3120 410 0.0021 - -
9.5348 420 0.0029 0.0323 0.7871
9.7577 430 0.0023 - -
9.9805 440 0.0027 - -

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.0
  • Datasets: 3.1.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
15
Safetensors
Model size
153M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for x2bee/ModernBERT-SimCSE-multitask_v04

Finetuned
(2)
this model

Evaluation results