metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:57566
- loss:MultipleNegativesRankingLoss
base_model: allenai/specter2_base
widget:
- source_sentence: Cannabis evolution
sentences:
- 'The cannabis conundrum. '
- 'Dawn and decline of the holy smoke. '
- '[Computer-assisted system for interstitial hyperthermia]. '
- source_sentence: Lateral Ventricle AT/RT
sentences:
- >-
Improved Assessment of Pathological Regurgitation in Patients with
Prosthetic Heart Valves by Multiplane Transesophageal Echocardiography.
- '[Surgical anatomy of the lateral ventricles]. '
- >-
Lateral Ventricle Atypical Teratoid/Rhabdoid Tumor (AT/RT): Case Report
and Review of Literature.
- source_sentence: Parkinsonian motor fluctuations
sentences:
- 'Basic mechanisms of motor fluctuations. '
- 'Nonmotor Fluctuations in Parkinson''s Disease. '
- >-
Sodium conductance in calcium channels of single smooth muscle cells of
guinea-pig taenia caeci.
- source_sentence: Phagocytic Assay
sentences:
- 'Assay for phagocytosis. '
- 'Opsonophagocytic assay. '
- >-
Clinical evaluation of synthetic aperture sequential beamforming
ultrasound in patients with liver tumors.
- source_sentence: Content validity assessment
sentences:
- 'Content validity is naught. '
- >-
Male requires a higher median target effect-site concentration of
propofol for I-gel placement when combined with dexmedetomidine.
- >-
Establishing content-validity of a disease-specific health-related
quality of life instrument for patients with chronic hypersensitivity
pneumonitis.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on allenai/specter2_base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.04
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.22
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.044000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.27
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15735897323110787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13194444444444445
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.13092350353731416
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.52
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.084
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.052000000000000005
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.52
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.35375176104312445
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.30138095238095236
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.31610409814616347
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.12000000000000001
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.41000000000000003
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12000000000000001
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.041
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.115
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.27
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.395
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25555536713711613
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21666269841269842
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22351380084173883
name: Cosine Map@100
SentenceTransformer based on allenai/specter2_base
This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: allenai/specter2_base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Content validity assessment',
'Establishing content-validity of a disease-specific health-related quality of life instrument for patients with chronic hypersensitivity pneumonitis. ',
'Content validity is naught. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoNQ
andNanoMSMARCO
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoNQ | NanoMSMARCO |
---|---|---|
cosine_accuracy@1 | 0.04 | 0.2 |
cosine_accuracy@3 | 0.2 | 0.36 |
cosine_accuracy@5 | 0.22 | 0.42 |
cosine_accuracy@10 | 0.3 | 0.52 |
cosine_precision@1 | 0.04 | 0.2 |
cosine_precision@3 | 0.0667 | 0.12 |
cosine_precision@5 | 0.044 | 0.084 |
cosine_precision@10 | 0.03 | 0.052 |
cosine_recall@1 | 0.03 | 0.2 |
cosine_recall@3 | 0.18 | 0.36 |
cosine_recall@5 | 0.2 | 0.42 |
cosine_recall@10 | 0.27 | 0.52 |
cosine_ndcg@10 | 0.1574 | 0.3538 |
cosine_mrr@10 | 0.1319 | 0.3014 |
cosine_map@100 | 0.1309 | 0.3161 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.12 |
cosine_accuracy@3 | 0.28 |
cosine_accuracy@5 | 0.32 |
cosine_accuracy@10 | 0.41 |
cosine_precision@1 | 0.12 |
cosine_precision@3 | 0.0933 |
cosine_precision@5 | 0.064 |
cosine_precision@10 | 0.041 |
cosine_recall@1 | 0.115 |
cosine_recall@3 | 0.27 |
cosine_recall@5 | 0.31 |
cosine_recall@10 | 0.395 |
cosine_ndcg@10 | 0.2556 |
cosine_mrr@10 | 0.2167 |
cosine_map@100 | 0.2235 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 57,566 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 7.4 tokens
- max: 27 tokens
- min: 4 tokens
- mean: 19.98 tokens
- max: 78 tokens
- min: 4 tokens
- mean: 12.3 tokens
- max: 46 tokens
- Samples:
anchor positive negative neutron camera autofocus
The autofocusing system of the IMAT neutron camera.
Robust autofocusing in microscopy.
Melanophore-stimulating hormone-melatonin antagonism
Melanophore-stimulating hormone-melatonin antagonism in relation to colour change in Xenopus laevis.
Melanin-concentrating hormone, melanocortin receptors and regulation of luteinizing hormone release.
Healthcare Reform Criticism
Experts critique doctors' ideas for reforming health care.
Healthcare reform?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64gradient_accumulation_steps
: 8learning_rate
: 3e-05weight_decay
: 0.01num_train_epochs
: 1lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|
0 | 0 | - | 0.0633 | 0.2640 | 0.1636 |
0.0089 | 1 | 22.3889 | - | - | - |
0.0178 | 2 | 22.1875 | - | - | - |
0.0267 | 3 | 21.4657 | - | - | - |
0.0356 | 4 | 21.7306 | - | - | - |
0.0444 | 5 | 21.3965 | - | - | - |
0.0533 | 6 | 21.5539 | - | - | - |
0.0622 | 7 | 21.5853 | - | - | - |
0.0711 | 8 | 21.6282 | - | - | - |
0.08 | 9 | 21.2169 | - | - | - |
0.0889 | 10 | 21.1228 | - | - | - |
0.0978 | 11 | 20.7026 | - | - | - |
0.1067 | 12 | 21.2562 | - | - | - |
0.1156 | 13 | 21.1227 | - | - | - |
0.1244 | 14 | 20.6465 | - | - | - |
0.1333 | 15 | 20.5888 | - | - | - |
0.1422 | 16 | 20.2334 | - | - | - |
0.1511 | 17 | 20.6545 | - | - | - |
0.16 | 18 | 20.2517 | - | - | - |
0.1689 | 19 | 19.6825 | - | - | - |
0.1778 | 20 | 19.9251 | - | - | - |
0.1867 | 21 | 19.6937 | - | - | - |
0.1956 | 22 | 19.2779 | - | - | - |
0.2044 | 23 | 19.2927 | - | - | - |
0.2133 | 24 | 19.2895 | - | - | - |
0.2222 | 25 | 18.9854 | 0.1085 | 0.2978 | 0.2032 |
0.2311 | 26 | 18.5096 | - | - | - |
0.24 | 27 | 18.3789 | - | - | - |
0.2489 | 28 | 18.2159 | - | - | - |
0.2578 | 29 | 17.8306 | - | - | - |
0.2667 | 30 | 17.5964 | - | - | - |
0.2756 | 31 | 17.2527 | - | - | - |
0.2844 | 32 | 17.2274 | - | - | - |
0.2933 | 33 | 17.557 | - | - | - |
0.3022 | 34 | 17.4682 | - | - | - |
0.3111 | 35 | 16.9115 | - | - | - |
0.32 | 36 | 16.9938 | - | - | - |
0.3289 | 37 | 16.1648 | - | - | - |
0.3378 | 38 | 16.2908 | - | - | - |
0.3467 | 39 | 16.7883 | - | - | - |
0.3556 | 40 | 16.5278 | - | - | - |
0.3644 | 41 | 15.4466 | - | - | - |
0.3733 | 42 | 15.3954 | - | - | - |
0.3822 | 43 | 16.1363 | - | - | - |
0.3911 | 44 | 14.8857 | - | - | - |
0.4 | 45 | 15.5596 | - | - | - |
0.4089 | 46 | 15.6978 | - | - | - |
0.4178 | 47 | 14.6959 | - | - | - |
0.4267 | 48 | 15.0677 | - | - | - |
0.4356 | 49 | 14.4375 | - | - | - |
0.4444 | 50 | 15.0901 | 0.1348 | 0.3290 | 0.2319 |
0.4533 | 51 | 13.813 | - | - | - |
0.4622 | 52 | 14.3135 | - | - | - |
0.4711 | 53 | 14.9517 | - | - | - |
0.48 | 54 | 14.0599 | - | - | - |
0.4889 | 55 | 13.8699 | - | - | - |
0.4978 | 56 | 14.6277 | - | - | - |
0.5067 | 57 | 13.3742 | - | - | - |
0.5156 | 58 | 13.7985 | - | - | - |
0.5244 | 59 | 13.2972 | - | - | - |
0.5333 | 60 | 12.9836 | - | - | - |
0.5422 | 61 | 13.2035 | - | - | - |
0.5511 | 62 | 13.399 | - | - | - |
0.56 | 63 | 12.8694 | - | - | - |
0.5689 | 64 | 12.9775 | - | - | - |
0.5778 | 65 | 13.5685 | - | - | - |
0.5867 | 66 | 12.5359 | - | - | - |
0.5956 | 67 | 12.7989 | - | - | - |
0.6044 | 68 | 12.2337 | - | - | - |
0.6133 | 69 | 12.9103 | - | - | - |
0.6222 | 70 | 12.6319 | - | - | - |
0.6311 | 71 | 12.3662 | - | - | - |
0.64 | 72 | 12.4788 | - | - | - |
0.6489 | 73 | 12.7665 | - | - | - |
0.6578 | 74 | 12.7189 | - | - | - |
0.6667 | 75 | 11.6918 | 0.1558 | 0.3619 | 0.2588 |
0.6756 | 76 | 12.0761 | - | - | - |
0.6844 | 77 | 12.0588 | - | - | - |
0.6933 | 78 | 12.1507 | - | - | - |
0.7022 | 79 | 11.7982 | - | - | - |
0.7111 | 80 | 12.6278 | - | - | - |
0.72 | 81 | 12.1629 | - | - | - |
0.7289 | 82 | 11.9421 | - | - | - |
0.7378 | 83 | 12.1184 | - | - | - |
0.7467 | 84 | 11.9142 | - | - | - |
0.7556 | 85 | 12.1162 | - | - | - |
0.7644 | 86 | 12.2741 | - | - | - |
0.7733 | 87 | 11.8835 | - | - | - |
0.7822 | 88 | 11.8583 | - | - | - |
0.7911 | 89 | 11.74 | - | - | - |
0.8 | 90 | 12.0793 | - | - | - |
0.8089 | 91 | 11.6838 | - | - | - |
0.8178 | 92 | 11.6922 | - | - | - |
0.8267 | 93 | 11.9418 | - | - | - |
0.8356 | 94 | 12.2899 | - | - | - |
0.8444 | 95 | 12.0957 | - | - | - |
0.8533 | 96 | 12.0643 | - | - | - |
0.8622 | 97 | 12.3496 | - | - | - |
0.8711 | 98 | 12.3521 | - | - | - |
0.88 | 99 | 11.7082 | - | - | - |
0.8889 | 100 | 11.6085 | 0.1574 | 0.3538 | 0.2556 |
0.8978 | 101 | 11.7018 | - | - | - |
0.9067 | 102 | 11.8227 | - | - | - |
0.9156 | 103 | 12.5774 | - | - | - |
0.9244 | 104 | 11.465 | - | - | - |
0.9333 | 105 | 11.303 | - | - | - |
0.9422 | 106 | 11.8521 | - | - | - |
0.9511 | 107 | 11.6083 | - | - | - |
0.96 | 108 | 12.3972 | - | - | - |
0.9689 | 109 | 11.6962 | - | - | - |
0.9778 | 110 | 11.1335 | - | - | - |
0.9867 | 111 | 12.1325 | - | - | - |
0.9956 | 112 | 11.7444 | - | - | - |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 2.19.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}