hate_speech_detection_with_target-bert-large-portuguese-cased

This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0610
  • Accuracy: 0.9892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8021 1.0 93 0.1410 0.9594
0.0974 2.0 186 0.0974 0.9770
0.1401 3.0 279 0.0550 0.9838
0.046 4.0 372 0.0618 0.9878
0.0344 5.0 465 0.0469 0.9892
0.2429 6.0 558 0.0854 0.9878
0.0696 7.0 651 0.0451 0.9892
0.0394 8.0 744 0.0460 0.9892
0.0279 9.0 837 0.0469 0.9892
0.0362 10.0 930 0.0779 0.9865
0.0215 11.0 1023 0.0655 0.9878
0.0193 12.0 1116 0.0587 0.9892
0.0154 13.0 1209 0.0594 0.9892
0.015 14.0 1302 0.0601 0.9905
0.0156 15.0 1395 0.0604 0.9892
0.0157 16.0 1488 0.0604 0.9892
0.0145 17.0 1581 0.0607 0.9892
0.0176 18.0 1674 0.0607 0.9892
0.0193 19.0 1767 0.0609 0.9892
0.0206 20.0 1860 0.0610 0.9892

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
79
Safetensors
Model size
334M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for willianr/hate_speech_detection_with_target-bert-large-portuguese-cased

Finetuned
(35)
this model

Space using willianr/hate_speech_detection_with_target-bert-large-portuguese-cased 1