SetFit with google-t5/t5-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses google-t5/t5-small as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: google-t5/t5-small
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: None tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Tech Support |
|
HR |
|
Product |
|
Returns |
|
Logistics |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Do you have any special deals or discounts on bulk items?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 14.25 | 26 |
Label | Training Sample Count |
---|---|
Returns | 8 |
Tech Support | 8 |
Logistics | 8 |
HR | 8 |
Product | 8 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (100, 100)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.025 | 1 | 0.2674 | - |
1.25 | 50 | 0.2345 | - |
2.5 | 100 | 0.2558 | - |
3.75 | 150 | 0.2126 | - |
5.0 | 200 | 0.1904 | - |
6.25 | 250 | 0.1965 | - |
7.5 | 300 | 0.2013 | - |
8.75 | 350 | 0.1221 | - |
10.0 | 400 | 0.1254 | - |
11.25 | 450 | 0.0791 | - |
12.5 | 500 | 0.0917 | - |
13.75 | 550 | 0.0757 | - |
15.0 | 600 | 0.0446 | - |
16.25 | 650 | 0.0407 | - |
17.5 | 700 | 0.0276 | - |
18.75 | 750 | 0.0297 | - |
20.0 | 800 | 0.017 | - |
21.25 | 850 | 0.0193 | - |
22.5 | 900 | 0.0105 | - |
23.75 | 950 | 0.0143 | - |
25.0 | 1000 | 0.0133 | - |
26.25 | 1050 | 0.0127 | - |
27.5 | 1100 | 0.0064 | - |
28.75 | 1150 | 0.0076 | - |
30.0 | 1200 | 0.0099 | - |
31.25 | 1250 | 0.0077 | - |
32.5 | 1300 | 0.0059 | - |
33.75 | 1350 | 0.0047 | - |
35.0 | 1400 | 0.0059 | - |
36.25 | 1450 | 0.005 | - |
37.5 | 1500 | 0.005 | - |
38.75 | 1550 | 0.005 | - |
40.0 | 1600 | 0.0043 | - |
41.25 | 1650 | 0.0056 | - |
42.5 | 1700 | 0.0036 | - |
43.75 | 1750 | 0.0029 | - |
45.0 | 1800 | 0.0031 | - |
46.25 | 1850 | 0.0033 | - |
47.5 | 1900 | 0.0028 | - |
48.75 | 1950 | 0.0042 | - |
50.0 | 2000 | 0.0038 | - |
51.25 | 2050 | 0.0032 | - |
52.5 | 2100 | 0.0033 | - |
53.75 | 2150 | 0.0031 | - |
55.0 | 2200 | 0.0023 | - |
56.25 | 2250 | 0.002 | - |
57.5 | 2300 | 0.003 | - |
58.75 | 2350 | 0.0039 | - |
60.0 | 2400 | 0.003 | - |
61.25 | 2450 | 0.0035 | - |
62.5 | 2500 | 0.0022 | - |
63.75 | 2550 | 0.0029 | - |
65.0 | 2600 | 0.0029 | - |
66.25 | 2650 | 0.0019 | - |
67.5 | 2700 | 0.002 | - |
68.75 | 2750 | 0.0041 | - |
70.0 | 2800 | 0.0022 | - |
71.25 | 2850 | 0.0027 | - |
72.5 | 2900 | 0.0016 | - |
73.75 | 2950 | 0.002 | - |
75.0 | 3000 | 0.0029 | - |
76.25 | 3050 | 0.0024 | - |
77.5 | 3100 | 0.0017 | - |
78.75 | 3150 | 0.0017 | - |
80.0 | 3200 | 0.0025 | - |
81.25 | 3250 | 0.0023 | - |
82.5 | 3300 | 0.0018 | - |
83.75 | 3350 | 0.0021 | - |
85.0 | 3400 | 0.0016 | - |
86.25 | 3450 | 0.0021 | - |
87.5 | 3500 | 0.0018 | - |
88.75 | 3550 | 0.0014 | - |
90.0 | 3600 | 0.0014 | - |
91.25 | 3650 | 0.0026 | - |
92.5 | 3700 | 0.0012 | - |
93.75 | 3750 | 0.0031 | - |
95.0 | 3800 | 0.0025 | - |
96.25 | 3850 | 0.0014 | - |
97.5 | 3900 | 0.0012 | - |
98.75 | 3950 | 0.0025 | - |
100.0 | 4000 | 0.002 | - |
Framework Versions
- Python: 3.11.8
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for wikd/t5-small-finetuned
Base model
google-t5/t5-small