XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Marathi
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mr")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mr")
- Downloads last month
- 120
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-mr
Space using wietsedv/xlm-roberta-base-ft-udpos28-mr 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported67.400
- Dutch Test accuracy on Universal Dependencies v2.8self-reported61.500
- German Test accuracy on Universal Dependencies v2.8self-reported66.900
- Italian Test accuracy on Universal Dependencies v2.8self-reported64.800
- French Test accuracy on Universal Dependencies v2.8self-reported61.700
- Spanish Test accuracy on Universal Dependencies v2.8self-reported60.100
- Russian Test accuracy on Universal Dependencies v2.8self-reported68.100
- Swedish Test accuracy on Universal Dependencies v2.8self-reported68.400
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported64.100
- Danish Test accuracy on Universal Dependencies v2.8self-reported66.400