XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Korean

This model is part of our paper called:

  • Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages

Check the Space for more details.

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ko")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ko")
Downloads last month
109
Safetensors
Model size
277M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-ko

Space using wietsedv/xlm-roberta-base-ft-udpos28-ko 1

Evaluation results

  • English Test accuracy on Universal Dependencies v2.8
    self-reported
    61.700
  • Dutch Test accuracy on Universal Dependencies v2.8
    self-reported
    55.900
  • German Test accuracy on Universal Dependencies v2.8
    self-reported
    58.900
  • Italian Test accuracy on Universal Dependencies v2.8
    self-reported
    58.700
  • French Test accuracy on Universal Dependencies v2.8
    self-reported
    53.600
  • Spanish Test accuracy on Universal Dependencies v2.8
    self-reported
    52.600
  • Russian Test accuracy on Universal Dependencies v2.8
    self-reported
    66.400
  • Swedish Test accuracy on Universal Dependencies v2.8
    self-reported
    64.000
  • Norwegian Test accuracy on Universal Dependencies v2.8
    self-reported
    58.900
  • Danish Test accuracy on Universal Dependencies v2.8
    self-reported
    63.700