Update README.md
Browse files
README.md
CHANGED
@@ -47,12 +47,12 @@ Benchmarks show significantly better English-Japanese and Japanese-English trans
|
|
47 |

|
48 |
翻訳タスクに関しては、より大きなモデルに負けない性能を発揮します
|
49 |
元の画像クレジット Sebastian Ruder(@seb_ruder)
|
50 |
-
(※FloRES実行時はwriting_style: journalistic、WMT23実行時はwriting_style: casualを指定。wmt23.ja-en時は一行だけ改行不揃いを手修正)
|
51 |
|
52 |
For translation tasks, it performs as well as larger models.
|
53 |
Original image credit: Sebastian Ruder (@seb_ruder)
|
54 |
-
(*When running FloRES, specify writing_style: journalistic, and when running WMT23, specify writing_style: casual. When running wmt23.ja-en, one line was manually corrected for line breaks.)
|
55 |
|
|
|
|
|
56 |
|
57 |
GoogleのウェブサービスColabを使うと無料でC3TR-Adapterを試す事が出来ます。リンク先でOpen In Colabボタンを押して起動してください。
|
58 |
You can try C3TR-Adapter for free using Google's web service Colab. Please press the Open In Colab button on the link to activate it.
|
@@ -93,7 +93,7 @@ import json
|
|
93 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
94 |
from peft import PeftModel
|
95 |
|
96 |
-
model_id = "unsloth/gemma-
|
97 |
peft_model_id = "webbigdata/C3TR-Adapter"
|
98 |
|
99 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
47 |

|
48 |
翻訳タスクに関しては、より大きなモデルに負けない性能を発揮します
|
49 |
元の画像クレジット Sebastian Ruder(@seb_ruder)
|
|
|
50 |
|
51 |
For translation tasks, it performs as well as larger models.
|
52 |
Original image credit: Sebastian Ruder (@seb_ruder)
|
|
|
53 |
|
54 |
+
翻訳ベンチマークの実行方法やその他のベンチマーク結果については[JTransBench](https://github.com/webbigdata-jp/JTransBench)を参考にしてください。
|
55 |
+
For instructions on how to run the translation benchmark and other benchmark results, please refer to [JTransBench](https://github.com/webbigdata-jp/JTransBench).
|
56 |
|
57 |
GoogleのウェブサービスColabを使うと無料でC3TR-Adapterを試す事が出来ます。リンク先でOpen In Colabボタンを押して起動してください。
|
58 |
You can try C3TR-Adapter for free using Google's web service Colab. Please press the Open In Colab button on the link to activate it.
|
|
|
93 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
94 |
from peft import PeftModel
|
95 |
|
96 |
+
model_id = "unsloth/gemma-2-9b-it-bnb-4bit"
|
97 |
peft_model_id = "webbigdata/C3TR-Adapter"
|
98 |
|
99 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|