Model save
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -50,87 +50,88 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.0008 | 4.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
|
|
134 |
|
135 |
|
136 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4945
|
22 |
+
- Accuracy: 0.9085
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.5426 | 0.0604 | 20 | 0.7869 | 0.7451 |
|
54 |
+
| 0.5984 | 0.1208 | 40 | 0.3943 | 0.7908 |
|
55 |
+
| 0.4864 | 0.1813 | 60 | 0.9365 | 0.7843 |
|
56 |
+
| 0.6039 | 0.2417 | 80 | 0.6580 | 0.7712 |
|
57 |
+
| 0.5741 | 0.3021 | 100 | 0.3454 | 0.8235 |
|
58 |
+
| 0.4276 | 0.3625 | 120 | 0.5421 | 0.8170 |
|
59 |
+
| 0.4342 | 0.4230 | 140 | 0.4258 | 0.8562 |
|
60 |
+
| 0.4915 | 0.4834 | 160 | 0.5961 | 0.8301 |
|
61 |
+
| 0.4127 | 0.5438 | 180 | 0.2987 | 0.8693 |
|
62 |
+
| 0.3166 | 0.6042 | 200 | 0.3308 | 0.8693 |
|
63 |
+
| 0.4018 | 0.6647 | 220 | 0.5286 | 0.8039 |
|
64 |
+
| 0.3007 | 0.7251 | 240 | 0.5845 | 0.8627 |
|
65 |
+
| 0.4893 | 0.7855 | 260 | 0.3662 | 0.8627 |
|
66 |
+
| 0.274 | 0.8459 | 280 | 0.3483 | 0.8693 |
|
67 |
+
| 0.5741 | 0.9063 | 300 | 0.3280 | 0.8824 |
|
68 |
+
| 0.3752 | 0.9668 | 320 | 0.5251 | 0.8889 |
|
69 |
+
| 0.2711 | 1.0272 | 340 | 0.6097 | 0.8562 |
|
70 |
+
| 0.2369 | 1.0876 | 360 | 0.5457 | 0.8693 |
|
71 |
+
| 0.3756 | 1.1480 | 380 | 0.6890 | 0.8758 |
|
72 |
+
| 0.6575 | 1.2085 | 400 | 0.4709 | 0.8693 |
|
73 |
+
| 0.3268 | 1.2689 | 420 | 0.5219 | 0.8497 |
|
74 |
+
| 0.3994 | 1.3293 | 440 | 0.4282 | 0.8693 |
|
75 |
+
| 0.0879 | 1.3897 | 460 | 0.6294 | 0.8758 |
|
76 |
+
| 0.2566 | 1.4502 | 480 | 0.7143 | 0.8627 |
|
77 |
+
| 0.2897 | 1.5106 | 500 | 0.6120 | 0.8693 |
|
78 |
+
| 0.321 | 1.5710 | 520 | 0.4749 | 0.8758 |
|
79 |
+
| 0.1871 | 1.6314 | 540 | 0.4392 | 0.9085 |
|
80 |
+
| 0.1654 | 1.6918 | 560 | 0.4663 | 0.9085 |
|
81 |
+
| 0.3166 | 1.7523 | 580 | 0.5048 | 0.8889 |
|
82 |
+
| 0.222 | 1.8127 | 600 | 0.4550 | 0.9085 |
|
83 |
+
| 0.4299 | 1.8731 | 620 | 0.3445 | 0.9085 |
|
84 |
+
| 0.0942 | 1.9335 | 640 | 0.3735 | 0.9281 |
|
85 |
+
| 0.3991 | 1.9940 | 660 | 0.3646 | 0.9085 |
|
86 |
+
| 0.0581 | 2.0544 | 680 | 0.3527 | 0.9085 |
|
87 |
+
| 0.2712 | 2.1148 | 700 | 0.4270 | 0.9020 |
|
88 |
+
| 0.0443 | 2.1752 | 720 | 0.5462 | 0.8954 |
|
89 |
+
| 0.3831 | 2.2356 | 740 | 0.3419 | 0.9216 |
|
90 |
+
| 0.2267 | 2.2961 | 760 | 0.4925 | 0.8889 |
|
91 |
+
| 0.1821 | 2.3565 | 780 | 0.3625 | 0.9216 |
|
92 |
+
| 0.2926 | 2.4169 | 800 | 0.3671 | 0.9020 |
|
93 |
+
| 0.2507 | 2.4773 | 820 | 0.3853 | 0.9020 |
|
94 |
+
| 0.2446 | 2.5378 | 840 | 0.4571 | 0.8954 |
|
95 |
+
| 0.1926 | 2.5982 | 860 | 0.5436 | 0.8497 |
|
96 |
+
| 0.1725 | 2.6586 | 880 | 0.6576 | 0.8497 |
|
97 |
+
| 0.2033 | 2.7190 | 900 | 0.4772 | 0.9020 |
|
98 |
+
| 0.0095 | 2.7795 | 920 | 0.4103 | 0.9150 |
|
99 |
+
| 0.2896 | 2.8399 | 940 | 0.4333 | 0.9085 |
|
100 |
+
| 0.2661 | 2.9003 | 960 | 0.5793 | 0.8889 |
|
101 |
+
| 0.1338 | 2.9607 | 980 | 0.4543 | 0.8954 |
|
102 |
+
| 0.0751 | 3.0211 | 1000 | 0.5029 | 0.8954 |
|
103 |
+
| 0.2093 | 3.0816 | 1020 | 0.4631 | 0.9020 |
|
104 |
+
| 0.2436 | 3.1420 | 1040 | 0.5888 | 0.8693 |
|
105 |
+
| 0.1375 | 3.2024 | 1060 | 0.6457 | 0.8889 |
|
106 |
+
| 0.0049 | 3.2628 | 1080 | 0.6601 | 0.8889 |
|
107 |
+
| 0.0089 | 3.3233 | 1100 | 0.6462 | 0.8824 |
|
108 |
+
| 0.0616 | 3.3837 | 1120 | 0.6607 | 0.8889 |
|
109 |
+
| 0.006 | 3.4441 | 1140 | 0.6243 | 0.9020 |
|
110 |
+
| 0.1769 | 3.5045 | 1160 | 0.5257 | 0.9020 |
|
111 |
+
| 0.0044 | 3.5650 | 1180 | 0.5508 | 0.9085 |
|
112 |
+
| 0.2295 | 3.6254 | 1200 | 0.4846 | 0.9150 |
|
113 |
+
| 0.1175 | 3.6858 | 1220 | 0.4764 | 0.9020 |
|
114 |
+
| 0.0746 | 3.7462 | 1240 | 0.4761 | 0.9020 |
|
115 |
+
| 0.0222 | 3.8066 | 1260 | 0.4836 | 0.9020 |
|
116 |
+
| 0.0012 | 3.8671 | 1280 | 0.4775 | 0.9216 |
|
117 |
+
| 0.2131 | 3.9275 | 1300 | 0.4607 | 0.9020 |
|
118 |
+
| 0.0006 | 3.9879 | 1320 | 0.4935 | 0.9085 |
|
119 |
+
| 0.0758 | 4.0483 | 1340 | 0.4592 | 0.9020 |
|
120 |
+
| 0.1466 | 4.1088 | 1360 | 0.4464 | 0.9085 |
|
121 |
+
| 0.0488 | 4.1692 | 1380 | 0.4816 | 0.9085 |
|
122 |
+
| 0.0014 | 4.2296 | 1400 | 0.4570 | 0.9150 |
|
123 |
+
| 0.082 | 4.2900 | 1420 | 0.4545 | 0.9216 |
|
124 |
+
| 0.0009 | 4.3505 | 1440 | 0.4721 | 0.9150 |
|
125 |
+
| 0.0008 | 4.4109 | 1460 | 0.4874 | 0.9216 |
|
126 |
+
| 0.0014 | 4.4713 | 1480 | 0.5003 | 0.9150 |
|
127 |
+
| 0.1612 | 4.5317 | 1500 | 0.5064 | 0.9150 |
|
128 |
+
| 0.2079 | 4.5921 | 1520 | 0.4994 | 0.9150 |
|
129 |
+
| 0.1423 | 4.6526 | 1540 | 0.4835 | 0.9150 |
|
130 |
+
| 0.0009 | 4.7130 | 1560 | 0.4825 | 0.9085 |
|
131 |
+
| 0.0017 | 4.7734 | 1580 | 0.4918 | 0.9085 |
|
132 |
+
| 0.0648 | 4.8338 | 1600 | 0.4917 | 0.9150 |
|
133 |
+
| 0.0531 | 4.8943 | 1620 | 0.4919 | 0.9085 |
|
134 |
+
| 0.0008 | 4.9547 | 1640 | 0.4945 | 0.9085 |
|
135 |
|
136 |
|
137 |
### Framework versions
|