wavyduck's picture
Update README.md
abf01a0 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: Wav2Vec2_FullDataset
    results: []
datasets:
  - timit-asr/timit_asr
language:
  - en
metrics:
  - wer
base_model:
  - facebook/wav2vec2-base
pipeline_tag: automatic-speech-recognition
library_name: transformers

Wav2Vec2_FullDataset

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5144
  • Wer: 0.3292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
3.5171 1.0 500 1.8108 1.0014
0.8397 2.01 1000 0.5559 0.5358
0.431 3.01 1500 0.4265 0.4469
0.2931 4.02 2000 0.4034 0.4193
0.2247 5.02 2500 0.4595 0.4076
0.1855 6.02 3000 0.4543 0.3991
0.1497 7.03 3500 0.4894 0.3839
0.1339 8.03 4000 0.4514 0.3836
0.1166 9.04 4500 0.4432 0.3682
0.1063 10.04 5000 0.4781 0.3773
0.0923 11.04 5500 0.4548 0.3699
0.0899 12.05 6000 0.4836 0.3636
0.0802 13.05 6500 0.5117 0.3637
0.0726 14.06 7000 0.4453 0.3653
0.07 15.06 7500 0.4983 0.3581
0.0641 16.06 8000 0.4922 0.3603
0.0561 17.07 8500 0.4947 0.3517
0.0522 18.07 9000 0.5132 0.3513
0.0483 19.08 9500 0.4815 0.3453
0.0419 20.08 10000 0.5556 0.3459
0.0402 21.08 10500 0.5141 0.3428
0.0368 22.09 11000 0.5176 0.3437
0.0322 23.09 11500 0.5326 0.3403
0.0305 24.1 12000 0.5046 0.3366
0.0258 25.1 12500 0.5219 0.3315
0.0254 26.1 13000 0.5166 0.3289
0.0226 27.11 13500 0.5177 0.3311
0.0226 28.11 14000 0.5187 0.3302
0.0209 29.12 14500 0.5144 0.3292

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.5.1+cu121
  • Datasets 1.18.3
  • Tokenizers 0.20.3