wanlige's picture
Adding Evaluation Results
d95e6e1 verified
|
raw
history blame
4.8 kB
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- wanlige/li-14b-v0.4
- sthenno-com/miscii-14b-0218
model-index:
- name: li-14b-v0.4-slerp0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.23
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.88
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 53.32
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.54
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.75
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.71
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=wanlige/li-14b-v0.4-slerp0.1
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method.
### Models Merged
The following models were included in the merge:
* [wanlige/li-14b-v0.4](https://huggingface.co/wanlige/li-14b-v0.4)
* [sthenno-com/miscii-14b-0218](https://huggingface.co/sthenno-com/miscii-14b-0218)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
# merge_method: arcee_fusion
# base_model: wanlige/li-14b-v0.4
# tokenizer_source: base
# parameters:
# int8_mask: true
# normalize: true
# rescale: false
# dtype: bfloat16
# out_dtype: bfloat16
# models:
# - model: sthenno-com/miscii-14b-0218
base_model: wanlige/li-14b-v0.4
merge_method: slerp
tokenizer_source: base
dtype: float32
out_dtype: bfloat16
parameters:
t:
- filter: self_attn
value: [ 0.00, 0.50, 0.30, 0.70, 1.00 ]
- filter: mlp
value: [ 1.00, 0.50, 0.70, 0.30, 0.00 ]
- value: [ 0.00, 0.00, 0.00, 0.00, 0.04, 0.08, 0.12, 0.16, 0.24, 0.32, 0.40, 0.48, 0.56, 0.64, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.64, 0.56, 0.48 ]
slices:
- sources:
- model: wanlige/li-14b-v0.4
layer_range: [ 0, 48 ]
- model: sthenno-com/miscii-14b-0218
layer_range: [ 0, 48 ]
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/wanlige__li-14b-v0.4-slerp0.1-details)
| Metric |Value|
|-------------------|----:|
|Avg. |42.91|
|IFEval (0-Shot) |79.23|
|BBH (3-Shot) |50.88|
|MATH Lvl 5 (4-Shot)|53.32|
|GPQA (0-shot) |14.54|
|MuSR (0-shot) |11.75|
|MMLU-PRO (5-shot) |47.71|