Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: mistralai/Mixtral-8x7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Open-Orca/SlimOrca
    type: sharegpt
    conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: /wb-mixtral/slimorca-mixstral-8x7b
save_total_limit: 1
hub_model_id:
dataloader_num_workers: 8
dataloader_prefetch_factor: 4
dataloader_pin_memory: true

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out:
lora_modules_to_save:
  - lm_head
  - embed_tokens
lora_target_linear: true

wandb_project: mixtral
wandb_entity: capecape
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
eval_steps: 0.05
save_steps: 0.25
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

Mixtral-8x7b-Remixtral

This model is a fine-tuned version of mistralai/Mixtral-8x7B-v0.1 on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 2

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.6.0
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for wandb/Mixtral-8x7b-Remixtral

Adapter
(91)
this model