File size: 7,987 Bytes
f684a69 0cc2ef7 f684a69 d30fe13 0cc2ef7 d30fe13 0cc2ef7 d30fe13 0cc2ef7 d30fe13 0cc2ef7 f684a69 460e2b9 f684a69 460e2b9 f684a69 460e2b9 f684a69 460e2b9 f684a69 460e2b9 f684a69 460e2b9 f684a69 0cc2ef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
base_model:
- facebook/wav2vec2-large-xlsr-53
language:
- en
license:
- cc-by-nc-4.0
pipeline_tag: audio-classification
tags:
- audio
- classification
- audio-classification
- Wav2Vec2
- sentiment
- earnings conference calls
- transformers
widget:
- src: negative.mp3
example_title: Negative speech sample
output:
- label: positive
score: 0.00
- label: neutral
score: 0.01
- label: negative
score: 0.99
- src: neutral.mp3
example_title: Neutral speech sample
output:
- label: positive
score: 0.00
- label: neutral
score: 0.99
- label: negative
score: 0.00
- src: positive.mp3
example_title: Positive speech sample
output:
- label: positive
score: 0.94
- label: neutral
score: 0.06
- label: negative
score: 0.00
---
# FinVoc2Vec
We introduce FinVoc2Vec, a vocal tone classifier designed for real-world corporate disclosures.
In the first stage, we apply a self-supervised pre-training procedure that allows the base model to adapt to the acoustic characteristics of disclosure environments using a sample of 500,000 unlabeled sentences of conference call speech. In the second stage, we apply a supervised fine-tuning procedure that enables the model to learn representations of human-labeled vocal tone. We construct a speech corpus containing
5,000 audio recordings of linguistically neutral sentences from conference calls and manually label each sentence with perceived vocal tone — positive, negative, or neutral.
## Example using a demo dataset
```python
import torch
from datasets import load_dataset
from transformers import Wav2Vec2FeatureExtractor, AutoModel
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
# load model and feature extractor
model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True).to(device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("waiv/FinVoc2Vec")
# load dataset
demo_dataset = load_dataset("waiv/FinVoc2Vec_demo")
arrays = [demo['audio']['array'] for demo in demo_dataset['test']]
# extract features
features = feature_extractor(
arrays,
sampling_rate=feature_extractor.sampling_rate,
padding=True,
truncation=False)
inputs = torch.tensor(np.array(features['input_values']), dtype=torch.float32).to(device)
attention_mask = torch.tensor(np.array(features['attention_mask']), dtype=torch.long).to(device)
prob_dict = {}
with torch.no_grad():
model_output = model(inputs, attention_mask=attention_mask)
logits = model_output['logits'].to(torch.float32).to('cpu')
probs = torch.nn.functional.softmax(logits, dim=1).numpy()
label_to_id = model.config.label2id
for i, id in enumerate(demo_dataset['test']['id']):
prob_dict[id] = {'prob_negative': probs[i, label_to_id['negative']],
'prob_neutral': probs[i, label_to_id['neutral']],
'prob_positive': probs[i, label_to_id['positive']]}
```
## Example using audio files
```python
import torch
from torch.utils.data import DataLoader
from datasets import load_dataset
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor, AutoModel
import torchaudio
device = "cuda" if torch.cuda.is_available() else "cpu"
@dataclass
class DataCollatorWithPadding:
processor: Union[Wav2Vec2Processor, Wav2Vec2FeatureExtractor]
padding: Union[bool, str] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self,
features: List[Dict[str, Union[List[int], torch.Tensor]]]
)-> Dict[str, torch.Tensor]:
input_features = [{"input_values": feature["input_values"]} for feature in features]
# trunc and pad max lengths, get attention mask
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt")
return batch
def preprocess_audio(batch: Dict,
feature_extractor: Wav2Vec2FeatureExtractor = None,
max_duration: Optional[float] = 20.0):
target_sr = feature_extractor.sampling_rate # 16kHz
audio_arrays = []
for path in batch['path']:
audio_array, sampling_rate = torchaudio.load(path)
# split to mono if multiple channels exist
if audio_array.shape[0] > 1:
audio_array = torch.mean(audio_array, dim=0, keepdim=True)
# resample audio
resampler = torchaudio.transforms.Resample(sampling_rate, target_sr)
audio_array = resampler(audio_array).squeeze().numpy()
audio_arrays.append(audio_array)
# set params for feature extractor
max_length = int(target_sr*max_duration) if max_duration is not None else None
# use feature extractor to normalize inputs and trunc data
result = feature_extractor(
audio_arrays,
sampling_rate=target_sr,
max_length=max_length,
truncation=bool(max_length))
return result
# load model
model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True).to(device)
# load feature extractor
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("waiv/FinVoc2Vec")
# load dataset
# NOTE: Needed feature: 'path' -> path to the audio-data
test_dataset = load_dataset(r'path/to/dataset')
# preprocess audio data
test_dataset = test_dataset.map(
preprocess_audio,
batch_size=1000,
batched=True,
num_proc=4,
fn_kwargs={'feature_extractor': feature_extractor,
'max_duration': 20.0})
data_collator = DataCollatorWithPadding(feature_extractor)
data_loader = DataLoader(
test_dataset,
batch_size=16,
shuffle=False,
collate_fn=data_collator,
num_workers=4)
with torch.no_grad():
for batch in data_loader:
attention_mask, inputs = batch['attention_mask'], batch['input_values']
inputs.to(device)
attention_mask.to(device)
model_output = model(inputs, attention_mask=attention_mask)
logits = model_output['logits'].to(torch.float32).to('cpu')
probs = torch.nn.functional.softmax(logits, dim=1).numpy()
label_to_id = model.config.label2id
dict_probs = {f'prob_negative': probs[:, label_to_id['negative']],
f'prob_neutral': probs[:, label_to_id['neutral']],
f'prob_positive': probs[:, label_to_id['positive']]}
```
## Register for autoclass
To register the model for your local autoclass, use the following code:
```python
from transformers import AutoConfig, AutoModel
# download model and config
finvoc2vec_config = AutoConfig.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True)
finvoc2vec_model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True)
# register model and config for automodel class
AutoConfig.register("finvoc2vec", FinVoc2VecConfig)
AutoModel.register(FinVoc2VecConfig, FinVoc2Vec)
```
## Further resources
Check the 🤗 Hugging Face [Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2) model description for additional resources and configurations.
## License
- This model is a derivative work based on Wav2Vec2 (Apache-2.0)
- This model is licensed under the Creative Commons Attribution Non Commercial 4.0 licence (CC-BY-NC-4.0)
## Paper
- [Listen Closely: Measuring Vocal Tone in Corporate Disclosures](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4307178)
## BibTeX
```
@article{ewertz2024,
title={Listen Closely: Measuring Vocal Tone in Corporate Disclosures},
author={Ewertz, Jonas and Knickrehm, Charlotte and Nienhaus, Martin and Reichmann, Doron},
year={2024},
note={Available at SSRN: \url{https://ssrn.com/abstract=4307178}}
}
|