Update README, add ds code
Browse files
README.md
CHANGED
@@ -53,11 +53,52 @@ We introduce FinVoc2Vec, a vocal tone classifier designed for real-world corpora
|
|
53 |
In the first stage, we apply a self-supervised pre-training procedure that allows the base model to adapt to the acoustic characteristics of disclosure environments using a sample of 500,000 unlabeled sentences of conference call speech. In the second stage, we apply a supervised fine-tuning procedure that enables the model to learn representations of human-labeled vocal tone. We construct a speech corpus containing
|
54 |
5,000 audio recordings of linguistically neutral sentences from conference calls and manually label each sentence with perceived vocal tone — positive, negative, or neutral.
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
```python
|
59 |
import torch
|
60 |
-
import torch.nn.functional as F
|
61 |
from torch.utils.data import DataLoader
|
62 |
from datasets import load_dataset
|
63 |
from dataclasses import dataclass
|
@@ -65,6 +106,8 @@ from typing import Dict, List, Optional, Union
|
|
65 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor, AutoModel
|
66 |
import torchaudio
|
67 |
|
|
|
|
|
68 |
@dataclass
|
69 |
class DataCollatorWithPadding:
|
70 |
|
@@ -120,7 +163,7 @@ def preprocess_audio(batch: Dict,
|
|
120 |
return result
|
121 |
|
122 |
# load model
|
123 |
-
model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True)
|
124 |
|
125 |
# load feature extractor
|
126 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("waiv/FinVoc2Vec")
|
@@ -151,10 +194,14 @@ with torch.no_grad():
|
|
151 |
for batch in data_loader:
|
152 |
|
153 |
attention_mask, inputs = batch['attention_mask'], batch['input_values']
|
|
|
|
|
|
|
|
|
154 |
model_output = model(inputs, attention_mask=attention_mask)
|
155 |
|
156 |
-
logits = model_output['logits'].to(torch.float32)
|
157 |
-
probs =
|
158 |
|
159 |
label_to_id = model.config.label2id
|
160 |
dict_probs = {f'prob_negative': probs[:, label_to_id['negative']],
|
|
|
53 |
In the first stage, we apply a self-supervised pre-training procedure that allows the base model to adapt to the acoustic characteristics of disclosure environments using a sample of 500,000 unlabeled sentences of conference call speech. In the second stage, we apply a supervised fine-tuning procedure that enables the model to learn representations of human-labeled vocal tone. We construct a speech corpus containing
|
54 |
5,000 audio recordings of linguistically neutral sentences from conference calls and manually label each sentence with perceived vocal tone — positive, negative, or neutral.
|
55 |
|
56 |
+
## Example using a demo dataset
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
from datasets import load_dataset
|
60 |
+
from transformers import Wav2Vec2FeatureExtractor, AutoModel
|
61 |
+
import numpy as np
|
62 |
+
|
63 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
+
|
65 |
+
# load model and feature extractor
|
66 |
+
model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True).to(device)
|
67 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("waiv/FinVoc2Vec")
|
68 |
+
|
69 |
+
# load dataset
|
70 |
+
demo_dataset = load_dataset("waiv/FinVoc2Vec_demo")
|
71 |
+
|
72 |
+
arrays = [demo['audio']['array'] for demo in demo_dataset['test']]
|
73 |
|
74 |
+
# extract features
|
75 |
+
features = feature_extractor(
|
76 |
+
arrays,
|
77 |
+
sampling_rate=feature_extractor.sampling_rate,
|
78 |
+
padding=True,
|
79 |
+
truncation=False)
|
80 |
+
|
81 |
+
# convert to tensor
|
82 |
+
inputs = torch.tensor(np.array(features['input_values']), dtype=torch.float32).to(device)
|
83 |
+
attention_mask = torch.tensor(np.array(features['attention_mask']), dtype=torch.long).to(device)
|
84 |
+
|
85 |
+
# apply model
|
86 |
+
prob_dict = {}
|
87 |
+
with torch.no_grad():
|
88 |
+
model_output = model(inputs, attention_mask=attention_mask)
|
89 |
+
logits = model_output['logits'].to(torch.float32).to('cpu')
|
90 |
+
probs = torch.nn.functional.softmax(logits, dim=1).numpy()
|
91 |
+
|
92 |
+
label_to_id = model.config.label2id
|
93 |
+
for i, id in enumerate(demo_dataset['test']['id']):
|
94 |
+
prob_dict[id] = {'prob_negative': probs[i, label_to_id['negative']],
|
95 |
+
'prob_neutral': probs[i, label_to_id['neutral']],
|
96 |
+
'prob_positive': probs[i, label_to_id['positive']]}
|
97 |
+
```
|
98 |
+
|
99 |
+
## Example using audio files
|
100 |
```python
|
101 |
import torch
|
|
|
102 |
from torch.utils.data import DataLoader
|
103 |
from datasets import load_dataset
|
104 |
from dataclasses import dataclass
|
|
|
106 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor, AutoModel
|
107 |
import torchaudio
|
108 |
|
109 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
110 |
+
|
111 |
@dataclass
|
112 |
class DataCollatorWithPadding:
|
113 |
|
|
|
163 |
return result
|
164 |
|
165 |
# load model
|
166 |
+
model = AutoModel.from_pretrained("waiv/FinVoc2Vec", trust_remote_code=True).to(device)
|
167 |
|
168 |
# load feature extractor
|
169 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("waiv/FinVoc2Vec")
|
|
|
194 |
for batch in data_loader:
|
195 |
|
196 |
attention_mask, inputs = batch['attention_mask'], batch['input_values']
|
197 |
+
|
198 |
+
inputs.to(device)
|
199 |
+
attention_mask.to(device)
|
200 |
+
|
201 |
model_output = model(inputs, attention_mask=attention_mask)
|
202 |
|
203 |
+
logits = model_output['logits'].to(torch.float32).to('cpu')
|
204 |
+
probs = torch.nn.functional.softmax(logits, dim=1).numpy()
|
205 |
|
206 |
label_to_id = model.config.label2id
|
207 |
dict_probs = {f'prob_negative': probs[:, label_to_id['negative']],
|