|
import random |
|
from diffusers import StableDiffusionPipeline |
|
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput, AutoencoderKL, CLIPTextModel, CLIPTokenizer, UNet2DConditionModel, KarrasDiffusionSchedulers, StableDiffusionSafetyChecker, CLIPImageProcessor |
|
from compel import Compel |
|
from tokenizer_util import TextualInversionLoaderMixin, MultiTokenCLIPTokenizer |
|
import torch |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
from dynamicprompts.generators import RandomPromptGenerator |
|
import time |
|
from compel import Compel |
|
from prompt_parser import ScheduledPromptConditioning |
|
from prompt_parser import get_learned_conditioning_prompt_schedules |
|
from dynamicprompts.generators import RandomPromptGenerator |
|
import tqdm |
|
from cachetools import LRUCache |
|
from image_processor import VaeImageProcessor |
|
|
|
|
|
class CustomStableDiffusionPipeline4_1(TextualInversionLoaderMixin, StableDiffusionPipeline): |
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
prompt_cache_size: int = 1024, |
|
prompt_cache_ttl: int = 60 * 2, |
|
) -> None: |
|
super().__init__(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, |
|
safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker) |
|
|
|
self.vae_scale_factor = 2 ** ( |
|
len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config( |
|
requires_safety_checker=requires_safety_checker) |
|
|
|
self.compel = Compel(tokenizer=self.tokenizer, |
|
text_encoder=self.text_encoder, truncate_long_prompts=False) |
|
self.cache = LRUCache(maxsize=prompt_cache_size) |
|
|
|
self.cached_uc = [None, None] |
|
self.cached_c = [None, None] |
|
|
|
self.prompt_handler = None |
|
|
|
def build_scheduled_cond(self, prompt, steps, key): |
|
prompt_schedule = get_learned_conditioning_prompt_schedules([prompt], steps)[ |
|
0] |
|
|
|
cached = self.cache.get(key, None) |
|
if cached is not None: |
|
return cached |
|
|
|
texts = [x[1] for x in prompt_schedule] |
|
conds = [self.compel.build_conditioning_tensor( |
|
text).to('cpu') for text in texts] |
|
|
|
cond_schedule = [] |
|
for i, s in enumerate(prompt_schedule): |
|
cond_schedule.append(ScheduledPromptConditioning(s[0], conds[i])) |
|
|
|
self.cache[key] = cond_schedule |
|
return cond_schedule |
|
|
|
def initialize_magic_prompt_cache(self, pos_prompt_template: str, plain_prompt_template: str, neg_prompt_template: str, num_to_generate: int, steps: int): |
|
r""" |
|
Initializes the magic prompt cache for the forward pass. |
|
Must be called immedaitely after Compel is loaded and embeds are initalized. |
|
""" |
|
rpg = RandomPromptGenerator(ignore_whitespace=True, seed=555) |
|
positive_prompts = rpg.generate( |
|
template=pos_prompt_template, num_images=num_to_generate) |
|
scheduled_conds = [] |
|
with torch.no_grad(): |
|
cache = {} |
|
for i in tqdm.tqdm(range(len(positive_prompts))): |
|
scheduled_conds.append(self.build_scheduled_cond( |
|
positive_prompts[i], steps, cache)) |
|
|
|
plain_scheduled_cond = self.build_scheduled_cond( |
|
plain_prompt_template, steps, cache) |
|
|
|
scheduled_uncond = self.build_scheduled_cond( |
|
neg_prompt_template, steps, cache) |
|
|
|
self.scheduled_conds = scheduled_conds |
|
self.plain_scheduled_cond = plain_scheduled_cond |
|
self.scheduled_uncond = scheduled_uncond |
|
|
|
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_input_ids = torch.from_numpy(text_input_ids) |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="max_length", return_tensors="np").input_ids |
|
untruncated_ids = torch.from_numpy(untruncated_ids) |
|
|
|
if ( |
|
text_input_ids.shape == untruncated_ids.shape |
|
and text_input_ids.numel() == untruncated_ids.numel() |
|
and not torch.equal(text_input_ids, untruncated_ids) |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
text_embeddings = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask) |
|
text_embeddings = text_embeddings[0] |
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) |
|
text_embeddings = text_embeddings.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = torch.from_numpy( |
|
uncond_input.attention_mask).to(device) |
|
else: |
|
attention_mask = None |
|
|
|
uncond_embeddings = self.text_encoder( |
|
torch.from_numpy(uncond_input.input_ids).to(device), attention_mask=attention_mask, |
|
) |
|
uncond_embeddings = uncond_embeddings[0] |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.repeat( |
|
1, num_images_per_prompt, 1) |
|
uncond_embeddings = uncond_embeddings.view( |
|
batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
def _encode_promptv2( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to( |
|
dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length( |
|
[negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def _pyramid_noise_like(self, noise, device, seed, iterations=6, discount=0.4): |
|
gen = torch.manual_seed(seed) |
|
|
|
b, c, w, h = noise.shape |
|
u = torch.nn.Upsample(size=(w, h), mode="bilinear").to(device) |
|
for i in range(iterations): |
|
r = random.random() * 2 + 2 |
|
wn, hn = max(1, int(w / (r**i))), max(1, int(h / (r**i))) |
|
noise += u(torch.randn(b, c, wn, hn, |
|
generator=gen).to(device)) * discount**i |
|
if wn == 1 or hn == 1: |
|
break |
|
return noise / noise.std() |
|
|
|
@torch.no_grad() |
|
def inferV4( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[ |
|
int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
compile_unet: bool = True, |
|
compile_vae: bool = True, |
|
compile_tenc: bool = True, |
|
max_tokens=0, |
|
seed=-1, |
|
flags=[], |
|
og_prompt=None, |
|
og_neg_prompt=None, |
|
disc=0.4, |
|
iter=6, |
|
pyramid=0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
if negative_prompt == None: |
|
negative_prompt = [''] |
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
plain = "plain" in flags |
|
flair = None |
|
for flag in flags: |
|
if "flair" in flag: |
|
flair = flag |
|
break |
|
|
|
with torch.no_grad(): |
|
c_time = time.time() |
|
user_cond = self.build_scheduled_cond( |
|
prompt[0], num_inference_steps, ('pos', og_prompt, seed, plain, flair)) |
|
c_time = time.time() |
|
user_uncond = self.build_scheduled_cond( |
|
negative_prompt[0], num_inference_steps, ('neg', negative_prompt[0], 0)) |
|
|
|
c = [] |
|
c.extend(user_cond) |
|
uc = [] |
|
uc.extend(user_uncond) |
|
max_token_count = 0 |
|
|
|
for cond in uc: |
|
if cond.cond.shape[1] > max_token_count: |
|
max_token_count = cond.cond.shape[1] |
|
for cond in c: |
|
if cond.cond.shape[1] > max_token_count: |
|
max_token_count = cond.cond.shape[1] |
|
|
|
def pad_tensor(conditionings: List[ScheduledPromptConditioning], max_token_count: int) -> List[ScheduledPromptConditioning]: |
|
|
|
c0_shape = conditionings[0].cond.shape |
|
if not all([len(c.cond.shape) == len(c0_shape) for c in conditionings]): |
|
raise ValueError( |
|
"Conditioning tensors must all have either 2 dimensions (unbatched) or 3 dimensions (batched)") |
|
|
|
if len(c0_shape) == 2: |
|
|
|
for c in conditionings: |
|
c.cond = c.cond.unsqueeze(0) |
|
c0_shape = conditionings[0].cond.shape |
|
if len(c0_shape) != 3: |
|
raise ValueError( |
|
f"All conditioning tensors must have the same number of dimensions (2 or 3)") |
|
|
|
if not all([c.cond.shape[0] == c0_shape[0] and c.cond.shape[2] == c0_shape[2] for c in conditionings]): |
|
raise ValueError( |
|
f"All conditioning tensors must have the same batch size ({c0_shape[0]}) and number of embeddings per token ({c0_shape[1]}") |
|
|
|
|
|
empty_z = torch.cat( |
|
[self.compel.build_conditioning_tensor("")] * c0_shape[0]) |
|
for i, c in enumerate(conditionings): |
|
cond = c.cond.to(self.device) |
|
while cond.shape[1] < max_token_count: |
|
cond = torch.cat([cond, empty_z], dim=1) |
|
conditionings[i] = ScheduledPromptConditioning( |
|
c.end_at_step, cond) |
|
return conditionings |
|
|
|
uc = pad_tensor(uc, max_token_count) |
|
c = pad_tensor(c, max_token_count) |
|
|
|
next_uc = uc.pop(0) |
|
next_c = c.pop(0) |
|
prompt_embeds = None |
|
new_embeds = True |
|
embed_per_step = [] |
|
for i in range(len(timesteps)): |
|
if i > next_uc.end_at_step: |
|
next_uc = uc.pop(0) |
|
new_embeds = True |
|
if i > next_c.end_at_step: |
|
next_c = c.pop(0) |
|
new_embeds = True |
|
|
|
if new_embeds: |
|
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length([ |
|
next_uc.cond, next_c.cond]) |
|
prompt_embeds = torch.cat( |
|
[negative_prompt_embeds, prompt_embeds]) |
|
new_embeds = False |
|
|
|
embed_per_step.append(prompt_embeds) |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - \ |
|
num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat( |
|
[latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t) |
|
|
|
prompt_embeds = embed_per_step[i] |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=prompt_embeds).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * \ |
|
(noise_pred_text - noise_pred_uncond) |
|
|
|
if (i < pyramid*num_inference_steps): |
|
noise_pred = self._pyramid_noise_like( |
|
noise_pred, device, seed, iterations=iter, discount=disc) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
@torch.no_grad() |
|
def inferPipe( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, |
|
List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[ |
|
int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_embeddings = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - \ |
|
num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat( |
|
[latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * \ |
|
(noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, text_embeddings.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|