Commit
·
d8e2f70
1
Parent(s):
aadb993
Upload 5 files
Browse files- image_processor.py +196 -0
- prompt_parser.py +373 -0
- requirements.txt +12 -0
- stable_diffusion_custom_v4_1.py +795 -0
- tokenizer_util.py +354 -0
image_processor.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
11 |
+
|
12 |
+
|
13 |
+
class VaeImageProcessor(ConfigMixin):
|
14 |
+
"""
|
15 |
+
Image Processor for VAE
|
16 |
+
|
17 |
+
Args:
|
18 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
19 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
20 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
21 |
+
VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this
|
22 |
+
factor.
|
23 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
24 |
+
Resampling filter to use when resizing the image.
|
25 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
26 |
+
Whether to normalize the image to [-1,1]
|
27 |
+
"""
|
28 |
+
|
29 |
+
config_name = CONFIG_NAME
|
30 |
+
|
31 |
+
@register_to_config
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
do_resize: bool = True,
|
35 |
+
vae_scale_factor: int = 8,
|
36 |
+
resample: str = "lanczos",
|
37 |
+
do_normalize: bool = True,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def numpy_to_pil(images):
|
43 |
+
"""
|
44 |
+
Convert a numpy image or a batch of images to a PIL image.
|
45 |
+
"""
|
46 |
+
if images.ndim == 3:
|
47 |
+
images = images[None, ...]
|
48 |
+
images = (images * 255).round().astype("uint8")
|
49 |
+
if images.shape[-1] == 1:
|
50 |
+
# special case for grayscale (single channel) images
|
51 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
52 |
+
else:
|
53 |
+
pil_images = [Image.fromarray(image) for image in images]
|
54 |
+
|
55 |
+
return pil_images
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def numpy_to_pt(images):
|
59 |
+
"""
|
60 |
+
Convert a numpy image to a pytorch tensor
|
61 |
+
"""
|
62 |
+
if images.ndim == 3:
|
63 |
+
images = images[..., None]
|
64 |
+
|
65 |
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
66 |
+
return images
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def pt_to_numpy(images):
|
70 |
+
"""
|
71 |
+
Convert a pytorch tensor to a numpy image
|
72 |
+
"""
|
73 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
74 |
+
return images
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def normalize(images):
|
78 |
+
"""
|
79 |
+
Normalize an image array to [-1,1]
|
80 |
+
"""
|
81 |
+
return 2.0 * images - 1.0
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def denormalize(images):
|
85 |
+
"""
|
86 |
+
Denormalize an image array to [0,1]
|
87 |
+
"""
|
88 |
+
return (images / 2 + 0.5).clamp(0, 1)
|
89 |
+
|
90 |
+
def resize(self, images: PIL.Image.Image) -> PIL.Image.Image:
|
91 |
+
"""
|
92 |
+
Resize a PIL image. Both height and width will be downscaled to the next integer multiple of `vae_scale_factor`
|
93 |
+
"""
|
94 |
+
w, h = images.size
|
95 |
+
w, h = (x - x % self.config.vae_scale_factor for x in (w, h)) # resize to integer multiple of vae_scale_factor
|
96 |
+
images = images.resize((w, h), resample=PIL_INTERPOLATION[self.config.resample])
|
97 |
+
return images
|
98 |
+
|
99 |
+
def preprocess(
|
100 |
+
self,
|
101 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
102 |
+
) -> torch.Tensor:
|
103 |
+
"""
|
104 |
+
Preprocess the image input, accepted formats are PIL images, numpy arrays or pytorch tensors"
|
105 |
+
"""
|
106 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
107 |
+
if isinstance(image, supported_formats):
|
108 |
+
image = [image]
|
109 |
+
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
|
110 |
+
raise ValueError(
|
111 |
+
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
|
112 |
+
)
|
113 |
+
|
114 |
+
if isinstance(image[0], PIL.Image.Image):
|
115 |
+
if self.config.do_resize:
|
116 |
+
image = [self.resize(i) for i in image]
|
117 |
+
image = [np.array(i).astype(np.float32) / 255.0 for i in image]
|
118 |
+
image = np.stack(image, axis=0) # to np
|
119 |
+
image = self.numpy_to_pt(image) # to pt
|
120 |
+
|
121 |
+
elif isinstance(image[0], np.ndarray):
|
122 |
+
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
|
123 |
+
image = self.numpy_to_pt(image)
|
124 |
+
_, _, height, width = image.shape
|
125 |
+
if self.config.do_resize and (
|
126 |
+
height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
|
127 |
+
):
|
128 |
+
raise ValueError(
|
129 |
+
f"Currently we only support resizing for PIL image - please resize your numpy array to be divisible by {self.config.vae_scale_factor}"
|
130 |
+
f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
|
131 |
+
)
|
132 |
+
|
133 |
+
elif isinstance(image[0], torch.Tensor):
|
134 |
+
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
|
135 |
+
_, _, height, width = image.shape
|
136 |
+
if self.config.do_resize and (
|
137 |
+
height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
|
138 |
+
):
|
139 |
+
raise ValueError(
|
140 |
+
f"Currently we only support resizing for PIL image - please resize your pytorch tensor to be divisible by {self.config.vae_scale_factor}"
|
141 |
+
f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
|
142 |
+
)
|
143 |
+
|
144 |
+
# expected range [0,1], normalize to [-1,1]
|
145 |
+
do_normalize = self.config.do_normalize
|
146 |
+
if image.min() < 0:
|
147 |
+
warnings.warn(
|
148 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
149 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
150 |
+
FutureWarning,
|
151 |
+
)
|
152 |
+
do_normalize = False
|
153 |
+
|
154 |
+
if do_normalize:
|
155 |
+
image = self.normalize(image)
|
156 |
+
|
157 |
+
return image
|
158 |
+
|
159 |
+
def postprocess(
|
160 |
+
self,
|
161 |
+
image: torch.FloatTensor,
|
162 |
+
output_type: str = "pil",
|
163 |
+
do_denormalize: Optional[List[bool]] = None,
|
164 |
+
):
|
165 |
+
if not isinstance(image, torch.Tensor):
|
166 |
+
raise ValueError(
|
167 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
168 |
+
)
|
169 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
170 |
+
deprecation_message = (
|
171 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
172 |
+
"`pil`, `np`, `pt`, `latent`"
|
173 |
+
)
|
174 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
175 |
+
output_type = "np"
|
176 |
+
|
177 |
+
if output_type == "latent":
|
178 |
+
return image
|
179 |
+
|
180 |
+
if do_denormalize is None:
|
181 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
182 |
+
|
183 |
+
image = torch.stack(
|
184 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
185 |
+
)
|
186 |
+
|
187 |
+
if output_type == "pt":
|
188 |
+
return image
|
189 |
+
|
190 |
+
image = self.pt_to_numpy(image)
|
191 |
+
|
192 |
+
if output_type == "np":
|
193 |
+
return image
|
194 |
+
|
195 |
+
if output_type == "pil":
|
196 |
+
return self.numpy_to_pil(image)
|
prompt_parser.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from collections import namedtuple
|
3 |
+
from typing import List
|
4 |
+
import lark
|
5 |
+
|
6 |
+
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
7 |
+
# will be represented with prompt_schedule like this (assuming steps=100):
|
8 |
+
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
9 |
+
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
|
10 |
+
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
|
11 |
+
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
12 |
+
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
13 |
+
|
14 |
+
schedule_parser = lark.Lark(r"""
|
15 |
+
!start: (prompt | /[][():]/+)*
|
16 |
+
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
|
17 |
+
!emphasized: "(" prompt ")"
|
18 |
+
| "(" prompt ":" prompt ")"
|
19 |
+
| "[" prompt "]"
|
20 |
+
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
21 |
+
alternate: "[" prompt ("|" prompt)+ "]"
|
22 |
+
WHITESPACE: /\s+/
|
23 |
+
plain: /([^\\\[\]():|]|\\.)+/
|
24 |
+
%import common.SIGNED_NUMBER -> NUMBER
|
25 |
+
""")
|
26 |
+
|
27 |
+
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
28 |
+
"""
|
29 |
+
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
|
30 |
+
>>> g("test")
|
31 |
+
[[10, 'test']]
|
32 |
+
>>> g("a [b:3]")
|
33 |
+
[[3, 'a '], [10, 'a b']]
|
34 |
+
>>> g("a [b: 3]")
|
35 |
+
[[3, 'a '], [10, 'a b']]
|
36 |
+
>>> g("a [[[b]]:2]")
|
37 |
+
[[2, 'a '], [10, 'a [[b]]']]
|
38 |
+
>>> g("[(a:2):3]")
|
39 |
+
[[3, ''], [10, '(a:2)']]
|
40 |
+
>>> g("a [b : c : 1] d")
|
41 |
+
[[1, 'a b d'], [10, 'a c d']]
|
42 |
+
>>> g("a[b:[c:d:2]:1]e")
|
43 |
+
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
|
44 |
+
>>> g("a [unbalanced")
|
45 |
+
[[10, 'a [unbalanced']]
|
46 |
+
>>> g("a [b:.5] c")
|
47 |
+
[[5, 'a c'], [10, 'a b c']]
|
48 |
+
>>> g("a [{b|d{:.5] c") # not handling this right now
|
49 |
+
[[5, 'a c'], [10, 'a {b|d{ c']]
|
50 |
+
>>> g("((a][:b:c [d:3]")
|
51 |
+
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
52 |
+
>>> g("[a|(b:1.1)]")
|
53 |
+
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
|
54 |
+
"""
|
55 |
+
|
56 |
+
def collect_steps(steps, tree):
|
57 |
+
l = [steps]
|
58 |
+
class CollectSteps(lark.Visitor):
|
59 |
+
def scheduled(self, tree):
|
60 |
+
tree.children[-1] = float(tree.children[-1])
|
61 |
+
if tree.children[-1] < 1:
|
62 |
+
tree.children[-1] *= steps
|
63 |
+
tree.children[-1] = min(steps, int(tree.children[-1]))
|
64 |
+
l.append(tree.children[-1])
|
65 |
+
def alternate(self, tree):
|
66 |
+
l.extend(range(1, steps+1))
|
67 |
+
CollectSteps().visit(tree)
|
68 |
+
return sorted(set(l))
|
69 |
+
|
70 |
+
def at_step(step, tree):
|
71 |
+
class AtStep(lark.Transformer):
|
72 |
+
def scheduled(self, args):
|
73 |
+
before, after, _, when = args
|
74 |
+
yield before or () if step <= when else after
|
75 |
+
def alternate(self, args):
|
76 |
+
yield next(args[(step - 1)%len(args)])
|
77 |
+
def start(self, args):
|
78 |
+
def flatten(x):
|
79 |
+
if type(x) == str:
|
80 |
+
yield x
|
81 |
+
else:
|
82 |
+
for gen in x:
|
83 |
+
yield from flatten(gen)
|
84 |
+
return ''.join(flatten(args))
|
85 |
+
def plain(self, args):
|
86 |
+
yield args[0].value
|
87 |
+
def __default__(self, data, children, meta):
|
88 |
+
for child in children:
|
89 |
+
yield child
|
90 |
+
return AtStep().transform(tree)
|
91 |
+
|
92 |
+
def get_schedule(prompt):
|
93 |
+
try:
|
94 |
+
tree = schedule_parser.parse(prompt)
|
95 |
+
except lark.exceptions.LarkError as e:
|
96 |
+
if 0:
|
97 |
+
import traceback
|
98 |
+
traceback.print_exc()
|
99 |
+
return [[steps, prompt]]
|
100 |
+
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
101 |
+
|
102 |
+
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
103 |
+
return [promptdict[prompt] for prompt in prompts]
|
104 |
+
|
105 |
+
|
106 |
+
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
107 |
+
|
108 |
+
|
109 |
+
def get_learned_conditioning(model, prompts, steps):
|
110 |
+
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
|
111 |
+
and the sampling step at which this condition is to be replaced by the next one.
|
112 |
+
|
113 |
+
Input:
|
114 |
+
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
|
115 |
+
|
116 |
+
Output:
|
117 |
+
[
|
118 |
+
[
|
119 |
+
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
|
120 |
+
],
|
121 |
+
[
|
122 |
+
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
|
123 |
+
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
|
124 |
+
]
|
125 |
+
]
|
126 |
+
"""
|
127 |
+
res = []
|
128 |
+
|
129 |
+
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
130 |
+
cache = {}
|
131 |
+
|
132 |
+
for prompt, prompt_schedule in zip(prompts, prompt_schedules):
|
133 |
+
|
134 |
+
cached = cache.get(prompt, None)
|
135 |
+
if cached is not None:
|
136 |
+
res.append(cached)
|
137 |
+
continue
|
138 |
+
|
139 |
+
texts = [x[1] for x in prompt_schedule]
|
140 |
+
conds = [model.build_conditioning_tensor(text) for text in texts]
|
141 |
+
|
142 |
+
cond_schedule = []
|
143 |
+
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
144 |
+
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
145 |
+
|
146 |
+
cache[prompt] = cond_schedule
|
147 |
+
res.append(cond_schedule)
|
148 |
+
|
149 |
+
return res
|
150 |
+
|
151 |
+
|
152 |
+
re_AND = re.compile(r"\bAND\b")
|
153 |
+
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
154 |
+
|
155 |
+
def get_multicond_prompt_list(prompts):
|
156 |
+
res_indexes = []
|
157 |
+
|
158 |
+
prompt_flat_list = []
|
159 |
+
prompt_indexes = {}
|
160 |
+
|
161 |
+
for prompt in prompts:
|
162 |
+
subprompts = re_AND.split(prompt)
|
163 |
+
|
164 |
+
indexes = []
|
165 |
+
for subprompt in subprompts:
|
166 |
+
match = re_weight.search(subprompt)
|
167 |
+
|
168 |
+
text, weight = match.groups() if match is not None else (subprompt, 1.0)
|
169 |
+
|
170 |
+
weight = float(weight) if weight is not None else 1.0
|
171 |
+
|
172 |
+
index = prompt_indexes.get(text, None)
|
173 |
+
if index is None:
|
174 |
+
index = len(prompt_flat_list)
|
175 |
+
prompt_flat_list.append(text)
|
176 |
+
prompt_indexes[text] = index
|
177 |
+
|
178 |
+
indexes.append((index, weight))
|
179 |
+
|
180 |
+
res_indexes.append(indexes)
|
181 |
+
|
182 |
+
return res_indexes, prompt_flat_list, prompt_indexes
|
183 |
+
|
184 |
+
|
185 |
+
class ComposableScheduledPromptConditioning:
|
186 |
+
def __init__(self, schedules, weight=1.0):
|
187 |
+
self.schedules: List[ScheduledPromptConditioning] = schedules
|
188 |
+
self.weight: float = weight
|
189 |
+
|
190 |
+
|
191 |
+
class MulticondLearnedConditioning:
|
192 |
+
def __init__(self, shape, batch):
|
193 |
+
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
194 |
+
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
195 |
+
|
196 |
+
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
197 |
+
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
198 |
+
For each prompt, the list is obtained by splitting the prompt using the AND separator.
|
199 |
+
|
200 |
+
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
|
201 |
+
"""
|
202 |
+
|
203 |
+
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
|
204 |
+
|
205 |
+
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
|
206 |
+
|
207 |
+
res = []
|
208 |
+
for indexes in res_indexes:
|
209 |
+
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
|
210 |
+
|
211 |
+
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
212 |
+
|
213 |
+
|
214 |
+
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
215 |
+
param = c[0][0].cond
|
216 |
+
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
217 |
+
for i, cond_schedule in enumerate(c):
|
218 |
+
target_index = 0
|
219 |
+
for current, (end_at, cond) in enumerate(cond_schedule):
|
220 |
+
if current_step <= end_at:
|
221 |
+
target_index = current
|
222 |
+
break
|
223 |
+
res[i] = cond_schedule[target_index].cond
|
224 |
+
|
225 |
+
return res
|
226 |
+
|
227 |
+
|
228 |
+
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
229 |
+
param = c.batch[0][0].schedules[0].cond
|
230 |
+
|
231 |
+
tensors = []
|
232 |
+
conds_list = []
|
233 |
+
|
234 |
+
for batch_no, composable_prompts in enumerate(c.batch):
|
235 |
+
conds_for_batch = []
|
236 |
+
|
237 |
+
for cond_index, composable_prompt in enumerate(composable_prompts):
|
238 |
+
target_index = 0
|
239 |
+
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
|
240 |
+
if current_step <= end_at:
|
241 |
+
target_index = current
|
242 |
+
break
|
243 |
+
|
244 |
+
conds_for_batch.append((len(tensors), composable_prompt.weight))
|
245 |
+
tensors.append(composable_prompt.schedules[target_index].cond)
|
246 |
+
|
247 |
+
conds_list.append(conds_for_batch)
|
248 |
+
|
249 |
+
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
|
250 |
+
# and won't be able to torch.stack them. So this fixes that.
|
251 |
+
token_count = max([x.shape[0] for x in tensors])
|
252 |
+
for i in range(len(tensors)):
|
253 |
+
if tensors[i].shape[0] != token_count:
|
254 |
+
last_vector = tensors[i][-1:]
|
255 |
+
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
|
256 |
+
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
|
257 |
+
|
258 |
+
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
|
259 |
+
|
260 |
+
|
261 |
+
re_attention = re.compile(r"""
|
262 |
+
\\\(|
|
263 |
+
\\\)|
|
264 |
+
\\\[|
|
265 |
+
\\]|
|
266 |
+
\\\\|
|
267 |
+
\\|
|
268 |
+
\(|
|
269 |
+
\[|
|
270 |
+
:([+-]?[.\d]+)\)|
|
271 |
+
\)|
|
272 |
+
]|
|
273 |
+
[^\\()\[\]:]+|
|
274 |
+
:
|
275 |
+
""", re.X)
|
276 |
+
|
277 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
278 |
+
|
279 |
+
def parse_prompt_attention(text):
|
280 |
+
"""
|
281 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
282 |
+
Accepted tokens are:
|
283 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
284 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
285 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
286 |
+
\( - literal character '('
|
287 |
+
\[ - literal character '['
|
288 |
+
\) - literal character ')'
|
289 |
+
\] - literal character ']'
|
290 |
+
\\ - literal character '\'
|
291 |
+
anything else - just text
|
292 |
+
|
293 |
+
>>> parse_prompt_attention('normal text')
|
294 |
+
[['normal text', 1.0]]
|
295 |
+
>>> parse_prompt_attention('an (important) word')
|
296 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
297 |
+
>>> parse_prompt_attention('(unbalanced')
|
298 |
+
[['unbalanced', 1.1]]
|
299 |
+
>>> parse_prompt_attention('\(literal\]')
|
300 |
+
[['(literal]', 1.0]]
|
301 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
302 |
+
[['unnecessaryparens', 1.1]]
|
303 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
304 |
+
[['a ', 1.0],
|
305 |
+
['house', 1.5730000000000004],
|
306 |
+
[' ', 1.1],
|
307 |
+
['on', 1.0],
|
308 |
+
[' a ', 1.1],
|
309 |
+
['hill', 0.55],
|
310 |
+
[', sun, ', 1.1],
|
311 |
+
['sky', 1.4641000000000006],
|
312 |
+
['.', 1.1]]
|
313 |
+
"""
|
314 |
+
|
315 |
+
res = []
|
316 |
+
round_brackets = []
|
317 |
+
square_brackets = []
|
318 |
+
|
319 |
+
round_bracket_multiplier = 1.1
|
320 |
+
square_bracket_multiplier = 1 / 1.1
|
321 |
+
|
322 |
+
def multiply_range(start_position, multiplier):
|
323 |
+
for p in range(start_position, len(res)):
|
324 |
+
res[p][1] *= multiplier
|
325 |
+
|
326 |
+
for m in re_attention.finditer(text):
|
327 |
+
text = m.group(0)
|
328 |
+
weight = m.group(1)
|
329 |
+
|
330 |
+
if text.startswith('\\'):
|
331 |
+
res.append([text[1:], 1.0])
|
332 |
+
elif text == '(':
|
333 |
+
round_brackets.append(len(res))
|
334 |
+
elif text == '[':
|
335 |
+
square_brackets.append(len(res))
|
336 |
+
elif weight is not None and len(round_brackets) > 0:
|
337 |
+
multiply_range(round_brackets.pop(), float(weight))
|
338 |
+
elif text == ')' and len(round_brackets) > 0:
|
339 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
340 |
+
elif text == ']' and len(square_brackets) > 0:
|
341 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
342 |
+
else:
|
343 |
+
parts = re.split(re_break, text)
|
344 |
+
for i, part in enumerate(parts):
|
345 |
+
if i > 0:
|
346 |
+
res.append(["BREAK", -1])
|
347 |
+
res.append([part, 1.0])
|
348 |
+
|
349 |
+
for pos in round_brackets:
|
350 |
+
multiply_range(pos, round_bracket_multiplier)
|
351 |
+
|
352 |
+
for pos in square_brackets:
|
353 |
+
multiply_range(pos, square_bracket_multiplier)
|
354 |
+
|
355 |
+
if len(res) == 0:
|
356 |
+
res = [["", 1.0]]
|
357 |
+
|
358 |
+
# merge runs of identical weights
|
359 |
+
i = 0
|
360 |
+
while i + 1 < len(res):
|
361 |
+
if res[i][1] == res[i + 1][1]:
|
362 |
+
res[i][0] += res[i + 1][0]
|
363 |
+
res.pop(i + 1)
|
364 |
+
else:
|
365 |
+
i += 1
|
366 |
+
|
367 |
+
return res
|
368 |
+
|
369 |
+
if __name__ == "__main__":
|
370 |
+
import doctest
|
371 |
+
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
372 |
+
else:
|
373 |
+
import torch # doctest faster
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compel==1.2.1
|
2 |
+
tokenizers==0.13.3
|
3 |
+
typing_extensions<4.6.0,>=3.6.6
|
4 |
+
diffusers==0.20.2
|
5 |
+
torch
|
6 |
+
tqdm==4.65.0
|
7 |
+
transformers==4.27.1
|
8 |
+
cachetools==5.3.1
|
9 |
+
dynamicprompts==0.27.0
|
10 |
+
numpy==1.24
|
11 |
+
lark==1.1.5
|
12 |
+
accelerate==0.21.0
|
stable_diffusion_custom_v4_1.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
# from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
4 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput, AutoencoderKL, CLIPTextModel, CLIPTokenizer, UNet2DConditionModel, KarrasDiffusionSchedulers, StableDiffusionSafetyChecker, CLIPImageProcessor
|
5 |
+
from compel import Compel
|
6 |
+
from tokenizer_util import TextualInversionLoaderMixin, MultiTokenCLIPTokenizer
|
7 |
+
import torch
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
9 |
+
from dynamicprompts.generators import RandomPromptGenerator
|
10 |
+
import time
|
11 |
+
from compel import Compel
|
12 |
+
from prompt_parser import ScheduledPromptConditioning
|
13 |
+
from prompt_parser import get_learned_conditioning_prompt_schedules
|
14 |
+
from dynamicprompts.generators import RandomPromptGenerator
|
15 |
+
import tqdm
|
16 |
+
from cachetools import LRUCache
|
17 |
+
from image_processor import VaeImageProcessor
|
18 |
+
|
19 |
+
|
20 |
+
class CustomStableDiffusionPipeline4_1(TextualInversionLoaderMixin, StableDiffusionPipeline):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
vae: AutoencoderKL,
|
24 |
+
text_encoder: CLIPTextModel,
|
25 |
+
tokenizer: CLIPTokenizer,
|
26 |
+
unet: UNet2DConditionModel,
|
27 |
+
scheduler: KarrasDiffusionSchedulers,
|
28 |
+
safety_checker: StableDiffusionSafetyChecker,
|
29 |
+
feature_extractor: CLIPImageProcessor,
|
30 |
+
requires_safety_checker: bool = True,
|
31 |
+
prompt_cache_size: int = 1024,
|
32 |
+
prompt_cache_ttl: int = 60 * 2,
|
33 |
+
) -> None:
|
34 |
+
super().__init__(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler,
|
35 |
+
safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker)
|
36 |
+
|
37 |
+
self.vae_scale_factor = 2 ** (
|
38 |
+
len(self.vae.config.block_out_channels) - 1)
|
39 |
+
self.image_processor = VaeImageProcessor(
|
40 |
+
vae_scale_factor=self.vae_scale_factor)
|
41 |
+
self.register_to_config(
|
42 |
+
requires_safety_checker=requires_safety_checker)
|
43 |
+
|
44 |
+
self.compel = Compel(tokenizer=self.tokenizer,
|
45 |
+
text_encoder=self.text_encoder, truncate_long_prompts=False)
|
46 |
+
self.cache = LRUCache(maxsize=prompt_cache_size)
|
47 |
+
|
48 |
+
self.cached_uc = [None, None]
|
49 |
+
self.cached_c = [None, None]
|
50 |
+
|
51 |
+
self.prompt_handler = None
|
52 |
+
|
53 |
+
def build_scheduled_cond(self, prompt, steps, key):
|
54 |
+
prompt_schedule = get_learned_conditioning_prompt_schedules([prompt], steps)[
|
55 |
+
0]
|
56 |
+
|
57 |
+
cached = self.cache.get(key, None)
|
58 |
+
if cached is not None:
|
59 |
+
return cached
|
60 |
+
|
61 |
+
texts = [x[1] for x in prompt_schedule]
|
62 |
+
conds = [self.compel.build_conditioning_tensor(
|
63 |
+
text).to('cpu') for text in texts]
|
64 |
+
|
65 |
+
cond_schedule = []
|
66 |
+
for i, s in enumerate(prompt_schedule):
|
67 |
+
cond_schedule.append(ScheduledPromptConditioning(s[0], conds[i]))
|
68 |
+
|
69 |
+
self.cache[key] = cond_schedule
|
70 |
+
return cond_schedule
|
71 |
+
|
72 |
+
def initialize_magic_prompt_cache(self, pos_prompt_template: str, plain_prompt_template: str, neg_prompt_template: str, num_to_generate: int, steps: int):
|
73 |
+
r"""
|
74 |
+
Initializes the magic prompt cache for the forward pass.
|
75 |
+
Must be called immedaitely after Compel is loaded and embeds are initalized.
|
76 |
+
"""
|
77 |
+
rpg = RandomPromptGenerator(ignore_whitespace=True, seed=555)
|
78 |
+
positive_prompts = rpg.generate(
|
79 |
+
template=pos_prompt_template, num_images=num_to_generate)
|
80 |
+
scheduled_conds = []
|
81 |
+
with torch.no_grad():
|
82 |
+
cache = {}
|
83 |
+
for i in tqdm.tqdm(range(len(positive_prompts))):
|
84 |
+
scheduled_conds.append(self.build_scheduled_cond(
|
85 |
+
positive_prompts[i], steps, cache))
|
86 |
+
|
87 |
+
plain_scheduled_cond = self.build_scheduled_cond(
|
88 |
+
plain_prompt_template, steps, cache)
|
89 |
+
|
90 |
+
scheduled_uncond = self.build_scheduled_cond(
|
91 |
+
neg_prompt_template, steps, cache)
|
92 |
+
|
93 |
+
self.scheduled_conds = scheduled_conds
|
94 |
+
self.plain_scheduled_cond = plain_scheduled_cond
|
95 |
+
self.scheduled_uncond = scheduled_uncond
|
96 |
+
|
97 |
+
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
98 |
+
r"""
|
99 |
+
Encodes the prompt into text encoder hidden states.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
prompt (`str` or `list(int)`):
|
103 |
+
prompt to be encoded
|
104 |
+
device: (`torch.device`):
|
105 |
+
torch device
|
106 |
+
num_images_per_prompt (`int`):
|
107 |
+
number of images that should be generated per prompt
|
108 |
+
do_classifier_free_guidance (`bool`):
|
109 |
+
whether to use classifier free guidance or not
|
110 |
+
negative_prompt (`str` or `List[str]`):
|
111 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
112 |
+
if `guidance_scale` is less than `1`).
|
113 |
+
"""
|
114 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
115 |
+
|
116 |
+
text_inputs = self.tokenizer(
|
117 |
+
prompt,
|
118 |
+
padding="max_length",
|
119 |
+
max_length=self.tokenizer.model_max_length,
|
120 |
+
truncation=True,
|
121 |
+
return_tensors="np",
|
122 |
+
)
|
123 |
+
text_input_ids = text_inputs.input_ids
|
124 |
+
text_input_ids = torch.from_numpy(text_input_ids)
|
125 |
+
untruncated_ids = self.tokenizer(
|
126 |
+
prompt, padding="max_length", return_tensors="np").input_ids
|
127 |
+
untruncated_ids = torch.from_numpy(untruncated_ids)
|
128 |
+
|
129 |
+
if (
|
130 |
+
text_input_ids.shape == untruncated_ids.shape
|
131 |
+
and text_input_ids.numel() == untruncated_ids.numel()
|
132 |
+
and not torch.equal(text_input_ids, untruncated_ids)
|
133 |
+
):
|
134 |
+
removed_text = self.tokenizer.batch_decode(
|
135 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1])
|
136 |
+
logger.warning(
|
137 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
138 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
139 |
+
)
|
140 |
+
|
141 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
142 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
143 |
+
else:
|
144 |
+
attention_mask = None
|
145 |
+
|
146 |
+
text_embeddings = self.text_encoder(
|
147 |
+
text_input_ids.to(device), attention_mask=attention_mask)
|
148 |
+
text_embeddings = text_embeddings[0]
|
149 |
+
|
150 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
151 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
152 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
153 |
+
text_embeddings = text_embeddings.view(
|
154 |
+
bs_embed * num_images_per_prompt, seq_len, -1)
|
155 |
+
|
156 |
+
# get unconditional embeddings for classifier free guidance
|
157 |
+
if do_classifier_free_guidance:
|
158 |
+
uncond_tokens: List[str]
|
159 |
+
if negative_prompt is None:
|
160 |
+
uncond_tokens = [""] * batch_size
|
161 |
+
elif type(prompt) is not type(negative_prompt):
|
162 |
+
raise TypeError(
|
163 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
164 |
+
f" {type(prompt)}."
|
165 |
+
)
|
166 |
+
elif isinstance(negative_prompt, str):
|
167 |
+
uncond_tokens = [negative_prompt]
|
168 |
+
elif batch_size != len(negative_prompt):
|
169 |
+
raise ValueError(
|
170 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
171 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
172 |
+
" the batch size of `prompt`."
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
uncond_tokens = negative_prompt
|
176 |
+
|
177 |
+
max_length = text_input_ids.shape[-1]
|
178 |
+
uncond_input = self.tokenizer(
|
179 |
+
uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np",
|
180 |
+
)
|
181 |
+
|
182 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
183 |
+
attention_mask = torch.from_numpy(
|
184 |
+
uncond_input.attention_mask).to(device)
|
185 |
+
else:
|
186 |
+
attention_mask = None
|
187 |
+
|
188 |
+
uncond_embeddings = self.text_encoder(
|
189 |
+
torch.from_numpy(uncond_input.input_ids).to(device), attention_mask=attention_mask,
|
190 |
+
)
|
191 |
+
uncond_embeddings = uncond_embeddings[0]
|
192 |
+
|
193 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
194 |
+
seq_len = uncond_embeddings.shape[1]
|
195 |
+
uncond_embeddings = uncond_embeddings.repeat(
|
196 |
+
1, num_images_per_prompt, 1)
|
197 |
+
uncond_embeddings = uncond_embeddings.view(
|
198 |
+
batch_size * num_images_per_prompt, seq_len, -1)
|
199 |
+
|
200 |
+
# For classifier free guidance, we need to do two forward passes.
|
201 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
202 |
+
# to avoid doing two forward passes
|
203 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
204 |
+
|
205 |
+
return text_embeddings
|
206 |
+
|
207 |
+
def _encode_promptv2(
|
208 |
+
self,
|
209 |
+
prompt,
|
210 |
+
device,
|
211 |
+
num_images_per_prompt,
|
212 |
+
do_classifier_free_guidance,
|
213 |
+
negative_prompt=None,
|
214 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
215 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
216 |
+
):
|
217 |
+
|
218 |
+
if prompt is not None and isinstance(prompt, str):
|
219 |
+
batch_size = 1
|
220 |
+
elif prompt is not None and isinstance(prompt, list):
|
221 |
+
batch_size = len(prompt)
|
222 |
+
else:
|
223 |
+
batch_size = prompt_embeds.shape[0]
|
224 |
+
|
225 |
+
if prompt_embeds is None:
|
226 |
+
text_inputs = self.tokenizer(
|
227 |
+
prompt,
|
228 |
+
padding="max_length",
|
229 |
+
max_length=self.tokenizer.model_max_length,
|
230 |
+
truncation=True,
|
231 |
+
return_tensors="pt",
|
232 |
+
)
|
233 |
+
text_input_ids = text_inputs.input_ids
|
234 |
+
untruncated_ids = self.tokenizer(
|
235 |
+
prompt, padding="longest", return_tensors="pt").input_ids
|
236 |
+
|
237 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
238 |
+
text_input_ids, untruncated_ids
|
239 |
+
):
|
240 |
+
removed_text = self.tokenizer.batch_decode(
|
241 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
242 |
+
)
|
243 |
+
|
244 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
245 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
246 |
+
else:
|
247 |
+
attention_mask = None
|
248 |
+
|
249 |
+
prompt_embeds = self.text_encoder(
|
250 |
+
text_input_ids.to(device),
|
251 |
+
attention_mask=attention_mask,
|
252 |
+
)
|
253 |
+
prompt_embeds = prompt_embeds[0]
|
254 |
+
|
255 |
+
prompt_embeds = prompt_embeds.to(
|
256 |
+
dtype=self.text_encoder.dtype, device=device)
|
257 |
+
|
258 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
259 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
260 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
261 |
+
prompt_embeds = prompt_embeds.view(
|
262 |
+
bs_embed * num_images_per_prompt, seq_len, -1)
|
263 |
+
|
264 |
+
# get unconditional embeddings for classifier free guidance
|
265 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
266 |
+
uncond_tokens: List[str]
|
267 |
+
if negative_prompt is None:
|
268 |
+
uncond_tokens = [""] * batch_size
|
269 |
+
elif type(prompt) is not type(negative_prompt):
|
270 |
+
raise TypeError(
|
271 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
272 |
+
f" {type(prompt)}."
|
273 |
+
)
|
274 |
+
elif isinstance(negative_prompt, str):
|
275 |
+
uncond_tokens = [negative_prompt]
|
276 |
+
elif batch_size != len(negative_prompt):
|
277 |
+
raise ValueError(
|
278 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
279 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
280 |
+
" the batch size of `prompt`."
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
uncond_tokens = negative_prompt
|
284 |
+
|
285 |
+
max_length = prompt_embeds.shape[1]
|
286 |
+
uncond_input = self.tokenizer(
|
287 |
+
uncond_tokens,
|
288 |
+
padding="max_length",
|
289 |
+
max_length=max_length,
|
290 |
+
truncation=True,
|
291 |
+
return_tensors="pt",
|
292 |
+
)
|
293 |
+
|
294 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
295 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
296 |
+
else:
|
297 |
+
attention_mask = None
|
298 |
+
|
299 |
+
negative_prompt_embeds = self.text_encoder(
|
300 |
+
uncond_input.input_ids.to(device),
|
301 |
+
attention_mask=attention_mask,
|
302 |
+
)
|
303 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
304 |
+
|
305 |
+
if do_classifier_free_guidance:
|
306 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
307 |
+
seq_len = negative_prompt_embeds.shape[1]
|
308 |
+
|
309 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
310 |
+
dtype=self.text_encoder.dtype, device=device)
|
311 |
+
|
312 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
313 |
+
1, num_images_per_prompt, 1)
|
314 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
315 |
+
batch_size * num_images_per_prompt, seq_len, -1)
|
316 |
+
|
317 |
+
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length(
|
318 |
+
[negative_prompt_embeds, prompt_embeds])
|
319 |
+
# For classifier free guidance, we need to do two forward passes.
|
320 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
321 |
+
# to avoid doing two forward passes
|
322 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
323 |
+
|
324 |
+
return prompt_embeds
|
325 |
+
|
326 |
+
def _pyramid_noise_like(self, noise, device, seed, iterations=6, discount=0.4):
|
327 |
+
gen = torch.manual_seed(seed)
|
328 |
+
# EDIT: w and h get over-written, rename for a different variant!
|
329 |
+
b, c, w, h = noise.shape
|
330 |
+
u = torch.nn.Upsample(size=(w, h), mode="bilinear").to(device)
|
331 |
+
for i in range(iterations):
|
332 |
+
r = random.random() * 2 + 2 # Rather than always going 2x,
|
333 |
+
wn, hn = max(1, int(w / (r**i))), max(1, int(h / (r**i)))
|
334 |
+
noise += u(torch.randn(b, c, wn, hn,
|
335 |
+
generator=gen).to(device)) * discount**i
|
336 |
+
if wn == 1 or hn == 1:
|
337 |
+
break # Lowest resolution is 1x1
|
338 |
+
return noise / noise.std() # Scaled back to roughly unit variance
|
339 |
+
|
340 |
+
@torch.no_grad()
|
341 |
+
def inferV4(
|
342 |
+
self,
|
343 |
+
prompt: Union[str, List[str]],
|
344 |
+
height: Optional[int] = None,
|
345 |
+
width: Optional[int] = None,
|
346 |
+
num_inference_steps: int = 50,
|
347 |
+
guidance_scale: float = 7.5,
|
348 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
349 |
+
num_images_per_prompt: Optional[int] = 1,
|
350 |
+
eta: float = 0.0,
|
351 |
+
generator: Optional[torch.Generator] = None,
|
352 |
+
latents: Optional[torch.FloatTensor] = None,
|
353 |
+
output_type: Optional[str] = "pil",
|
354 |
+
return_dict: bool = True,
|
355 |
+
callback: Optional[Callable[[
|
356 |
+
int, int, torch.FloatTensor], None]] = None,
|
357 |
+
callback_steps: Optional[int] = 1,
|
358 |
+
compile_unet: bool = True,
|
359 |
+
compile_vae: bool = True,
|
360 |
+
compile_tenc: bool = True,
|
361 |
+
max_tokens=0,
|
362 |
+
seed=-1,
|
363 |
+
flags=[],
|
364 |
+
og_prompt=None,
|
365 |
+
og_neg_prompt=None,
|
366 |
+
disc=0.4,
|
367 |
+
iter=6,
|
368 |
+
pyramid=0, # disabled by default unless specified
|
369 |
+
):
|
370 |
+
r"""
|
371 |
+
Function invoked when calling the pipeline for generation.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
prompt (`str` or `List[str]`):
|
375 |
+
The prompt or prompts to guide the image generation.
|
376 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
377 |
+
The height in pixels of the generated image.
|
378 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
379 |
+
The width in pixels of the generated image.
|
380 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
381 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
382 |
+
expense of slower inference.
|
383 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
384 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
385 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
386 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
387 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
388 |
+
usually at the expense of lower image quality.
|
389 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
390 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
391 |
+
if `guidance_scale` is less than `1`).
|
392 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
393 |
+
The number of images to generate per prompt.
|
394 |
+
eta (`float`, *optional*, defaults to 0.0):
|
395 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
396 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
397 |
+
generator (`torch.Generator`, *optional*):
|
398 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
399 |
+
deterministic.
|
400 |
+
latents (`torch.FloatTensor`, *optional*):
|
401 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
402 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
403 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
404 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
405 |
+
The output format of the generate image. Choose between
|
406 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
407 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
408 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
409 |
+
plain tuple.
|
410 |
+
callback (`Callable`, *optional*):
|
411 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
412 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
413 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
414 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
415 |
+
called at every step.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
419 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
420 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
421 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
422 |
+
(nsfw) content, according to the `safety_checker`.
|
423 |
+
"""
|
424 |
+
# 0. Default height and width to unet
|
425 |
+
|
426 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
427 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
428 |
+
|
429 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
430 |
+
if negative_prompt == None:
|
431 |
+
negative_prompt = ['']
|
432 |
+
# 2. Define call parameters
|
433 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
434 |
+
device = self._execution_device
|
435 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
436 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
437 |
+
# corresponds to doing no classifier free guidance.
|
438 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
439 |
+
|
440 |
+
# # 3. Encode input prompt
|
441 |
+
|
442 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
443 |
+
timesteps = self.scheduler.timesteps
|
444 |
+
|
445 |
+
# Cache key for flags
|
446 |
+
plain = "plain" in flags
|
447 |
+
flair = None
|
448 |
+
for flag in flags:
|
449 |
+
if "flair" in flag:
|
450 |
+
flair = flag
|
451 |
+
break
|
452 |
+
|
453 |
+
with torch.no_grad():
|
454 |
+
c_time = time.time()
|
455 |
+
user_cond = self.build_scheduled_cond(
|
456 |
+
prompt[0], num_inference_steps, ('pos', og_prompt, seed, plain, flair))
|
457 |
+
c_time = time.time()
|
458 |
+
user_uncond = self.build_scheduled_cond(
|
459 |
+
negative_prompt[0], num_inference_steps, ('neg', negative_prompt[0], 0))
|
460 |
+
|
461 |
+
c = []
|
462 |
+
c.extend(user_cond)
|
463 |
+
uc = []
|
464 |
+
uc.extend(user_uncond)
|
465 |
+
max_token_count = 0
|
466 |
+
|
467 |
+
for cond in uc:
|
468 |
+
if cond.cond.shape[1] > max_token_count:
|
469 |
+
max_token_count = cond.cond.shape[1]
|
470 |
+
for cond in c:
|
471 |
+
if cond.cond.shape[1] > max_token_count:
|
472 |
+
max_token_count = cond.cond.shape[1]
|
473 |
+
|
474 |
+
def pad_tensor(conditionings: List[ScheduledPromptConditioning], max_token_count: int) -> List[ScheduledPromptConditioning]:
|
475 |
+
|
476 |
+
c0_shape = conditionings[0].cond.shape
|
477 |
+
if not all([len(c.cond.shape) == len(c0_shape) for c in conditionings]):
|
478 |
+
raise ValueError(
|
479 |
+
"Conditioning tensors must all have either 2 dimensions (unbatched) or 3 dimensions (batched)")
|
480 |
+
|
481 |
+
if len(c0_shape) == 2:
|
482 |
+
# need to be unsqueezed
|
483 |
+
for c in conditionings:
|
484 |
+
c.cond = c.cond.unsqueeze(0)
|
485 |
+
c0_shape = conditionings[0].cond.shape
|
486 |
+
if len(c0_shape) != 3:
|
487 |
+
raise ValueError(
|
488 |
+
f"All conditioning tensors must have the same number of dimensions (2 or 3)")
|
489 |
+
|
490 |
+
if not all([c.cond.shape[0] == c0_shape[0] and c.cond.shape[2] == c0_shape[2] for c in conditionings]):
|
491 |
+
raise ValueError(
|
492 |
+
f"All conditioning tensors must have the same batch size ({c0_shape[0]}) and number of embeddings per token ({c0_shape[1]}")
|
493 |
+
|
494 |
+
# if necessary, pad shorter tensors out with an emptystring tensor
|
495 |
+
empty_z = torch.cat(
|
496 |
+
[self.compel.build_conditioning_tensor("")] * c0_shape[0])
|
497 |
+
for i, c in enumerate(conditionings):
|
498 |
+
cond = c.cond.to(self.device)
|
499 |
+
while cond.shape[1] < max_token_count:
|
500 |
+
cond = torch.cat([cond, empty_z], dim=1)
|
501 |
+
conditionings[i] = ScheduledPromptConditioning(
|
502 |
+
c.end_at_step, cond)
|
503 |
+
return conditionings
|
504 |
+
|
505 |
+
uc = pad_tensor(uc, max_token_count)
|
506 |
+
c = pad_tensor(c, max_token_count)
|
507 |
+
|
508 |
+
next_uc = uc.pop(0)
|
509 |
+
next_c = c.pop(0)
|
510 |
+
prompt_embeds = None
|
511 |
+
new_embeds = True
|
512 |
+
embed_per_step = []
|
513 |
+
for i in range(len(timesteps)):
|
514 |
+
if i > next_uc.end_at_step:
|
515 |
+
next_uc = uc.pop(0)
|
516 |
+
new_embeds = True
|
517 |
+
if i > next_c.end_at_step:
|
518 |
+
next_c = c.pop(0)
|
519 |
+
new_embeds = True
|
520 |
+
|
521 |
+
if new_embeds:
|
522 |
+
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length([
|
523 |
+
next_uc.cond, next_c.cond])
|
524 |
+
prompt_embeds = torch.cat(
|
525 |
+
[negative_prompt_embeds, prompt_embeds])
|
526 |
+
new_embeds = False
|
527 |
+
|
528 |
+
embed_per_step.append(prompt_embeds)
|
529 |
+
|
530 |
+
# 5. Prepare latent variables
|
531 |
+
num_channels_latents = self.unet.in_channels
|
532 |
+
latents = self.prepare_latents(
|
533 |
+
batch_size * num_images_per_prompt,
|
534 |
+
num_channels_latents,
|
535 |
+
height,
|
536 |
+
width,
|
537 |
+
prompt_embeds.dtype,
|
538 |
+
device,
|
539 |
+
generator,
|
540 |
+
latents,
|
541 |
+
)
|
542 |
+
|
543 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
544 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
545 |
+
|
546 |
+
# 7. Denoising loop
|
547 |
+
num_warmup_steps = len(timesteps) - \
|
548 |
+
num_inference_steps * self.scheduler.order
|
549 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
550 |
+
for i, t in enumerate(timesteps):
|
551 |
+
# expand the latents if we are doing classifier free guidance
|
552 |
+
latent_model_input = torch.cat(
|
553 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
554 |
+
latent_model_input = self.scheduler.scale_model_input(
|
555 |
+
latent_model_input, t)
|
556 |
+
|
557 |
+
prompt_embeds = embed_per_step[i]
|
558 |
+
# predict the noise residual
|
559 |
+
|
560 |
+
noise_pred = self.unet(
|
561 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
562 |
+
|
563 |
+
# perform guidance
|
564 |
+
if do_classifier_free_guidance:
|
565 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
566 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
567 |
+
(noise_pred_text - noise_pred_uncond)
|
568 |
+
|
569 |
+
if (i < pyramid*num_inference_steps):
|
570 |
+
noise_pred = self._pyramid_noise_like(
|
571 |
+
noise_pred, device, seed, iterations=iter, discount=disc)
|
572 |
+
|
573 |
+
# compute the previous noisy sample x_t -> x_t-1
|
574 |
+
latents = self.scheduler.step(
|
575 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
576 |
+
|
577 |
+
# call the callback, if provided
|
578 |
+
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
579 |
+
progress_bar.update()
|
580 |
+
if callback is not None and i % callback_steps == 0:
|
581 |
+
callback(i, t, latents)
|
582 |
+
|
583 |
+
if not output_type == "latent":
|
584 |
+
image = self.vae.decode(
|
585 |
+
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
586 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
587 |
+
image, device, prompt_embeds.dtype)
|
588 |
+
else:
|
589 |
+
image = latents
|
590 |
+
has_nsfw_concept = None
|
591 |
+
|
592 |
+
if has_nsfw_concept is None:
|
593 |
+
do_denormalize = [True] * image.shape[0]
|
594 |
+
else:
|
595 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
596 |
+
|
597 |
+
image = self.image_processor.postprocess(
|
598 |
+
image, output_type=output_type, do_denormalize=do_denormalize)
|
599 |
+
|
600 |
+
# Offload last model to CPU
|
601 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
602 |
+
self.final_offload_hook.offload()
|
603 |
+
|
604 |
+
if not return_dict:
|
605 |
+
return (image, has_nsfw_concept)
|
606 |
+
|
607 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
608 |
+
|
609 |
+
@torch.no_grad()
|
610 |
+
def inferPipe(
|
611 |
+
self,
|
612 |
+
prompt: Union[str, List[str]] = None,
|
613 |
+
height: Optional[int] = None,
|
614 |
+
width: Optional[int] = None,
|
615 |
+
num_inference_steps: int = 50,
|
616 |
+
guidance_scale: float = 7.5,
|
617 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
618 |
+
num_images_per_prompt: Optional[int] = 1,
|
619 |
+
eta: float = 0.0,
|
620 |
+
generator: Optional[Union[torch.Generator,
|
621 |
+
List[torch.Generator]]] = None,
|
622 |
+
latents: Optional[torch.FloatTensor] = None,
|
623 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
624 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
625 |
+
output_type: Optional[str] = "pil",
|
626 |
+
return_dict: bool = True,
|
627 |
+
callback: Optional[Callable[[
|
628 |
+
int, int, torch.FloatTensor], None]] = None,
|
629 |
+
callback_steps: int = 1,
|
630 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
631 |
+
):
|
632 |
+
r"""
|
633 |
+
Function invoked when calling the pipeline for generation.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
prompt (`str` or `List[str]`, *optional*):
|
637 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
638 |
+
instead.
|
639 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
640 |
+
The height in pixels of the generated image.
|
641 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
642 |
+
The width in pixels of the generated image.
|
643 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
644 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
645 |
+
expense of slower inference.
|
646 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
647 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
648 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
649 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
650 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
651 |
+
usually at the expense of lower image quality.
|
652 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
653 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
654 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
655 |
+
less than `1`).
|
656 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
657 |
+
The number of images to generate per prompt.
|
658 |
+
eta (`float`, *optional*, defaults to 0.0):
|
659 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
660 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
661 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
662 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
663 |
+
to make generation deterministic.
|
664 |
+
latents (`torch.FloatTensor`, *optional*):
|
665 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
666 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
667 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
668 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
669 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
670 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
671 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
672 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
673 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
674 |
+
argument.
|
675 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
676 |
+
The output format of the generate image. Choose between
|
677 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
678 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
679 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
680 |
+
plain tuple.
|
681 |
+
callback (`Callable`, *optional*):
|
682 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
683 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
684 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
685 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
686 |
+
called at every step.
|
687 |
+
cross_attention_kwargs (`dict`, *optional*):
|
688 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
689 |
+
`self.processor` in
|
690 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
691 |
+
|
692 |
+
Examples:
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
696 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
697 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
698 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
699 |
+
(nsfw) content, according to the `safety_checker`.
|
700 |
+
"""
|
701 |
+
# 0. Default height and width to unet
|
702 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
703 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
704 |
+
|
705 |
+
# 1. Check inputs. Raise error if not correct
|
706 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
707 |
+
|
708 |
+
# 2. Define call parameters
|
709 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
710 |
+
device = self._execution_device
|
711 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
712 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
713 |
+
# corresponds to doing no classifier free guidance.
|
714 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
715 |
+
|
716 |
+
# 3. Encode input prompt
|
717 |
+
text_embeddings = self._encode_prompt(
|
718 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
719 |
+
)
|
720 |
+
|
721 |
+
# 4. Prepare timesteps
|
722 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
723 |
+
timesteps = self.scheduler.timesteps
|
724 |
+
|
725 |
+
# 5. Prepare latent variables
|
726 |
+
num_channels_latents = self.unet.in_channels
|
727 |
+
latents = self.prepare_latents(
|
728 |
+
batch_size * num_images_per_prompt,
|
729 |
+
num_channels_latents,
|
730 |
+
height,
|
731 |
+
width,
|
732 |
+
text_embeddings.dtype,
|
733 |
+
device,
|
734 |
+
generator,
|
735 |
+
latents,
|
736 |
+
)
|
737 |
+
|
738 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
739 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
740 |
+
|
741 |
+
# 7. Denoising loop
|
742 |
+
num_warmup_steps = len(timesteps) - \
|
743 |
+
num_inference_steps * self.scheduler.order
|
744 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
745 |
+
for i, t in enumerate(timesteps):
|
746 |
+
# expand the latents if we are doing classifier free guidance
|
747 |
+
latent_model_input = torch.cat(
|
748 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
749 |
+
latent_model_input = self.scheduler.scale_model_input(
|
750 |
+
latent_model_input, t)
|
751 |
+
|
752 |
+
noise_pred = self.unet(
|
753 |
+
latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
754 |
+
|
755 |
+
# perform guidance
|
756 |
+
if do_classifier_free_guidance:
|
757 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
758 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
759 |
+
(noise_pred_text - noise_pred_uncond)
|
760 |
+
|
761 |
+
# compute the previous noisy sample x_t -> x_t-1
|
762 |
+
latents = self.scheduler.step(
|
763 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
764 |
+
|
765 |
+
# call the callback, if provided
|
766 |
+
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
767 |
+
progress_bar.update()
|
768 |
+
if callback is not None and i % callback_steps == 0:
|
769 |
+
callback(i, t, latents)
|
770 |
+
|
771 |
+
if not output_type == "latent":
|
772 |
+
image = self.vae.decode(
|
773 |
+
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
774 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
775 |
+
image, device, text_embeddings.dtype)
|
776 |
+
else:
|
777 |
+
image = latents
|
778 |
+
has_nsfw_concept = None
|
779 |
+
|
780 |
+
if has_nsfw_concept is None:
|
781 |
+
do_denormalize = [True] * image.shape[0]
|
782 |
+
else:
|
783 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
784 |
+
|
785 |
+
image = self.image_processor.postprocess(
|
786 |
+
image, output_type=output_type, do_denormalize=do_denormalize)
|
787 |
+
|
788 |
+
# Offload last model to CPU
|
789 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
790 |
+
self.final_offload_hook.offload()
|
791 |
+
|
792 |
+
if not return_dict:
|
793 |
+
return (image, has_nsfw_concept)
|
794 |
+
|
795 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
tokenizer_util.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Callable, Dict, Optional, Union, List
|
3 |
+
from urllib.parse import urlparse
|
4 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, CLIPTokenizer
|
5 |
+
import copy
|
6 |
+
import random
|
7 |
+
from io import BytesIO
|
8 |
+
from compel.embeddings_provider import BaseTextualInversionManager
|
9 |
+
|
10 |
+
class TextualInversionLoaderMixin(BaseTextualInversionManager):
|
11 |
+
r"""
|
12 |
+
Mixin class for adding textual inversion tokens and embeddings to the tokenizer and text encoder with method:
|
13 |
+
- [`~TextualInversionLoaderMixin.load_textual_inversion_embeddings`]
|
14 |
+
- [`~TextualInversionLoaderMixin.add_textual_inversion_embedding`]
|
15 |
+
"""
|
16 |
+
|
17 |
+
def load_textual_inversion_embeddings(
|
18 |
+
self,
|
19 |
+
embedding_path_dict_or_list: Union[Dict[str, str], List[Dict[str, str]]],
|
20 |
+
allow_replacement: bool = False,
|
21 |
+
):
|
22 |
+
r"""
|
23 |
+
Loads textual inversion embeddings and adds them to the tokenizer's vocabulary and the text encoder's embeddings.
|
24 |
+
Arguments:
|
25 |
+
embeddings_path_dict_or_list (`Dict[str, str]` or `List[str]`):
|
26 |
+
Dictionary of token to embedding path or List of embedding paths to embedding dictionaries.
|
27 |
+
The dictionary must have the following keys:
|
28 |
+
- `token`: name of the token to be added to the tokenizers' vocabulary
|
29 |
+
- `embedding`: path to the embedding of the token to be added to the text encoder's embedding matrix
|
30 |
+
The list must contain paths to embedding dictionaries where the keys are the tokens and the
|
31 |
+
values are the embeddings (same as above dictionary definition).
|
32 |
+
allow_replacement (`bool`, *optional*, defaults to `False`):
|
33 |
+
Whether to allow replacement of existing tokens in the tokenizer's vocabulary. If `False`
|
34 |
+
and a token is already in the vocabulary, an error will be raised.
|
35 |
+
Returns:
|
36 |
+
None
|
37 |
+
"""
|
38 |
+
# Validate that inheriting class instance contains required attributes
|
39 |
+
self._validate_method_call(self.load_textual_inversion_embeddings)
|
40 |
+
|
41 |
+
if isinstance(embedding_path_dict_or_list, dict):
|
42 |
+
for token, embedding_path in embedding_path_dict_or_list.items():
|
43 |
+
|
44 |
+
embedding_dict = torch.load(embedding_path, map_location=self.text_encoder.device)
|
45 |
+
embedding, is_multi_vec_token = self._extract_embedding_from_dict(embedding_dict)
|
46 |
+
|
47 |
+
self._validate_token_update(token, allow_replacement, is_multi_vec_token)
|
48 |
+
self.add_textual_inversion_embedding(token, embedding)
|
49 |
+
elif isinstance(embedding_path_dict_or_list, list):
|
50 |
+
for embedding_path in embedding_path_dict_or_list:
|
51 |
+
embedding_dict = torch.load(embedding_path, map_location=self.text_encoder.device)
|
52 |
+
token = self._extract_token_from_dict(embedding_dict)
|
53 |
+
embedding, is_multi_vec_token = self._extract_embedding_from_dict(embedding_dict)
|
54 |
+
|
55 |
+
self._validate_token_update(token, allow_replacement, is_multi_vec_token)
|
56 |
+
self.add_textual_inversion_embedding(token, embedding)
|
57 |
+
else:
|
58 |
+
raise ValueError(
|
59 |
+
f"Type {type(embedding_path_dict_or_list)} is invalid. The value passed to `embedding_path_dict_or_list` "
|
60 |
+
"must be a dictionary that maps a token to it's embedding file path "
|
61 |
+
"or a list of paths to embedding files containing embedding dictionaries."
|
62 |
+
)
|
63 |
+
|
64 |
+
def add_textual_inversion_embedding(self, token: str, embedding: torch.Tensor):
|
65 |
+
r"""
|
66 |
+
Adds a token to the tokenizer's vocabulary and an embedding to the text encoder's embedding matrix.
|
67 |
+
Arguments:
|
68 |
+
token (`str`):
|
69 |
+
The token to be added to the tokenizers' vocabulary
|
70 |
+
embedding (`torch.Tensor`):
|
71 |
+
The embedding of the token to be added to the text encoder's embedding matrix
|
72 |
+
Returns:
|
73 |
+
None
|
74 |
+
"""
|
75 |
+
# NOTE: Not clear to me that we intend for this to be a public/exposed method.
|
76 |
+
# Validate that inheriting class instance contains required attributes
|
77 |
+
self._validate_method_call(self.load_textual_inversion_embeddings)
|
78 |
+
|
79 |
+
embedding = embedding.to(self.text_encoder.dtype)
|
80 |
+
|
81 |
+
if not isinstance(self.tokenizer, MultiTokenCLIPTokenizer):
|
82 |
+
if token in self.tokenizer.get_vocab():
|
83 |
+
# If user has allowed replacement and the token exists, we only need to
|
84 |
+
# extract the existing id and update the embedding
|
85 |
+
token_id = self.tokenizer.convert_tokens_to_ids(token)
|
86 |
+
self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding
|
87 |
+
else:
|
88 |
+
# If the token does not exist, we add it to the tokenizer, then resize and update the
|
89 |
+
# text encoder acccordingly
|
90 |
+
self.tokenizer.add_tokens([token])
|
91 |
+
|
92 |
+
token_id = self.tokenizer.convert_tokens_to_ids(token)
|
93 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
94 |
+
self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding
|
95 |
+
else:
|
96 |
+
if token in self.tokenizer.token_map:
|
97 |
+
# If user has allowed replacement and the token exists, we need to
|
98 |
+
# remove all existing tokens associated with the old embbedding and
|
99 |
+
# upddate with the new ones
|
100 |
+
indices_to_remove = []
|
101 |
+
for token_to_remove in self.tokenizer.token_map[token]:
|
102 |
+
indices_to_remove.append(self.tokenizer.get_added_vocab()[token_to_remove])
|
103 |
+
|
104 |
+
# Remove old tokens from tokenizer
|
105 |
+
self.tokenizer.added_tokens_encoder.pop(token_to_remove)
|
106 |
+
|
107 |
+
# Convert indices to remove to tensor
|
108 |
+
indices_to_remove = torch.LongTensor(indices_to_remove)
|
109 |
+
|
110 |
+
# Remove old tokens from text encoder
|
111 |
+
token_embeds = self.text_encoder.get_input_embeddings().weight.data
|
112 |
+
indices_to_keep = torch.arange(0, token_embeds.shape[0])
|
113 |
+
indices_to_keep = indices_to_keep[indices_to_keep != indices_to_remove].squeeze()
|
114 |
+
token_embeds = token_embeds[indices_to_keep]
|
115 |
+
|
116 |
+
# Downsize text encoder
|
117 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
118 |
+
|
119 |
+
# Remove token from map so MultiTokenCLIPTokenizer doesn't complain
|
120 |
+
# on update
|
121 |
+
self.tokenizer.token_map.pop(token)
|
122 |
+
|
123 |
+
# Update token with new embedding
|
124 |
+
embedding_dims = len(embedding.shape)
|
125 |
+
num_vec_per_token = 1 if embedding_dims == 1 else embedding.shape[0]
|
126 |
+
|
127 |
+
self.tokenizer.add_placeholder_tokens(token, num_vec_per_token=num_vec_per_token)
|
128 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
129 |
+
token_ids = self.tokenizer.encode(token, add_special_tokens=False)
|
130 |
+
|
131 |
+
if embedding_dims > 1:
|
132 |
+
for i, token_id in enumerate(token_ids):
|
133 |
+
self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding[i]
|
134 |
+
else:
|
135 |
+
self.text_encoder.get_input_embeddings().weight.data[token_ids] = embedding
|
136 |
+
|
137 |
+
def _extract_embedding_from_dict(self, embedding_dict: Dict[str, str]) -> torch.Tensor:
|
138 |
+
r"""
|
139 |
+
Extracts the embedding from the embedding dictionary.
|
140 |
+
Arguments:
|
141 |
+
embedding_dict (`Dict[str, str]`):
|
142 |
+
The embedding dictionary loaded from the embedding path
|
143 |
+
Returns:
|
144 |
+
embedding (`torch.Tensor`):
|
145 |
+
The embedding to be added to the text encoder's embedding matrix
|
146 |
+
is_multi_vec_token (`bool`):
|
147 |
+
Whether the embedding is a multi-vector token or not
|
148 |
+
"""
|
149 |
+
is_multi_vec_token = False
|
150 |
+
# auto1111 embedding case
|
151 |
+
if "string_to_param" in embedding_dict:
|
152 |
+
embedding_dict = embedding_dict["string_to_param"]
|
153 |
+
embedding = embedding_dict["*"]
|
154 |
+
else:
|
155 |
+
embedding = list(embedding_dict.values())[0]
|
156 |
+
|
157 |
+
if len(embedding.shape) > 1:
|
158 |
+
# If the embedding has more than one dimension,
|
159 |
+
# We need to ensure the tokenizer is a MultiTokenTokenizer
|
160 |
+
# because there is branching logic that depends on that class
|
161 |
+
if not isinstance(self.tokenizer, MultiTokenCLIPTokenizer):
|
162 |
+
raise ValueError(
|
163 |
+
f"{self.__class__.__name__} requires `self.tokenizer` of type `MultiTokenCLIPTokenizer` for loading embeddings with more than one dimension."
|
164 |
+
)
|
165 |
+
is_multi_vec_token = True
|
166 |
+
|
167 |
+
return embedding, is_multi_vec_token
|
168 |
+
|
169 |
+
def _extract_token_from_dict(self, embedding_dict: Dict[str, str]) -> str:
|
170 |
+
r"""
|
171 |
+
Extracts the token from the embedding dictionary.
|
172 |
+
Arguments:
|
173 |
+
embedding_dict (`Dict[str, str]`):
|
174 |
+
The embedding dictionary loaded from the embedding path
|
175 |
+
Returns:
|
176 |
+
token (`str`):
|
177 |
+
The token to be added to the tokenizers' vocabulary
|
178 |
+
"""
|
179 |
+
# auto1111 embedding case
|
180 |
+
if "string_to_param" in embedding_dict:
|
181 |
+
token = embedding_dict["name"]
|
182 |
+
return token
|
183 |
+
|
184 |
+
return list(embedding_dict.keys())[0]
|
185 |
+
|
186 |
+
def _validate_method_call(self, method: Callable):
|
187 |
+
r"""
|
188 |
+
Validates that the method is being called from a class instance that has the required attributes.
|
189 |
+
Arguments:
|
190 |
+
method (`function`):
|
191 |
+
The class's method being called
|
192 |
+
Raises:
|
193 |
+
ValueError:
|
194 |
+
If the method is being called from a class instance that does not have
|
195 |
+
the required attributes, the method will not be callable.
|
196 |
+
Returns:
|
197 |
+
None
|
198 |
+
"""
|
199 |
+
if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
|
200 |
+
raise ValueError(
|
201 |
+
f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling `{method.__name__}`"
|
202 |
+
)
|
203 |
+
|
204 |
+
if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
|
205 |
+
raise ValueError(
|
206 |
+
f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling `{method.__name__}`"
|
207 |
+
)
|
208 |
+
|
209 |
+
def _validate_token_update(self, token, allow_replacement=False, is_multi_vec_token=False):
|
210 |
+
r"""Validates that the token is not already in the tokenizer's vocabulary.
|
211 |
+
Arguments:
|
212 |
+
token (`str`):
|
213 |
+
The token to be added to the tokenizers' vocabulary
|
214 |
+
allow_replacement (`bool`):
|
215 |
+
Whether to allow replacement of the token if it already exists in the tokenizer's vocabulary
|
216 |
+
is_multi_vec_token (`bool`):
|
217 |
+
Whether the embedding is a multi-vector token or not
|
218 |
+
Raises:
|
219 |
+
ValueError:
|
220 |
+
If the token is already in the tokenizer's vocabulary and `allow_replacement` is False.
|
221 |
+
Returns:
|
222 |
+
None
|
223 |
+
"""
|
224 |
+
if (not is_multi_vec_token and token in self.tokenizer.get_vocab()) or (
|
225 |
+
is_multi_vec_token and token in self.tokenizer.token_map
|
226 |
+
):
|
227 |
+
if allow_replacement:
|
228 |
+
print(
|
229 |
+
f"Token {token} already in tokenizer vocabulary. Overwriting existing token and embedding with the new one."
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
raise ValueError(
|
233 |
+
f"Token {token} already in tokenizer vocabulary. Please choose a different token name."
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: List[int]) -> List[int]:
|
238 |
+
pass
|
239 |
+
|
240 |
+
class MultiTokenCLIPTokenizer(CLIPTokenizer):
|
241 |
+
"""Tokenizer for CLIP models that have multi-vector tokens."""
|
242 |
+
|
243 |
+
def __init__(self, *args, **kwargs):
|
244 |
+
super().__init__(*args, **kwargs)
|
245 |
+
self.token_map = {}
|
246 |
+
|
247 |
+
def add_placeholder_tokens(self, placeholder_token, *args, num_vec_per_token=1, **kwargs):
|
248 |
+
r"""Adds placeholder tokens to the tokenizer's vocabulary.
|
249 |
+
Arguments:
|
250 |
+
placeholder_token (`str`):
|
251 |
+
The placeholder token to be added to the tokenizers' vocabulary and token map.
|
252 |
+
num_vec_per_token (`int`):
|
253 |
+
The number of vectors per token. Defaults to 1.
|
254 |
+
*args:
|
255 |
+
The arguments to be passed to the tokenizer's `add_tokens` method.
|
256 |
+
**kwargs:
|
257 |
+
The keyword arguments to be passed to the tokenizer's `add_tokens` method.
|
258 |
+
Returns:
|
259 |
+
None
|
260 |
+
"""
|
261 |
+
output = []
|
262 |
+
if num_vec_per_token == 1:
|
263 |
+
self.add_tokens(placeholder_token, *args, **kwargs)
|
264 |
+
output.append(placeholder_token)
|
265 |
+
else:
|
266 |
+
output = []
|
267 |
+
for i in range(num_vec_per_token):
|
268 |
+
ith_token = placeholder_token + f"_{i}"
|
269 |
+
self.add_tokens(ith_token, *args, **kwargs)
|
270 |
+
output.append(ith_token)
|
271 |
+
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
|
272 |
+
for token in self.token_map:
|
273 |
+
if token in placeholder_token:
|
274 |
+
raise ValueError(
|
275 |
+
f"The tokenizer already has placeholder token {token} that can get confused with"
|
276 |
+
f" {placeholder_token}keep placeholder tokens independent"
|
277 |
+
)
|
278 |
+
self.token_map[placeholder_token] = output
|
279 |
+
|
280 |
+
def replace_placeholder_tokens_in_text(self, text, vector_shuffle=False, prop_tokens_to_load=1.0):
|
281 |
+
r"""Replaces placeholder tokens in text with the tokens in the token map.
|
282 |
+
Opttionally, implements:
|
283 |
+
a) vector shuffling (https://github.com/rinongal/textual_inversion/pull/119)where
|
284 |
+
shuffling tokens were found to force the model to learn the concepts more descriptively.
|
285 |
+
b) proportional token loading so that not every token in the token map is loaded on each call;
|
286 |
+
used as part of progressive token loading during training which can improve generalization
|
287 |
+
during inference.
|
288 |
+
Arguments:
|
289 |
+
text (`str`):
|
290 |
+
The text to be processed.
|
291 |
+
vector_shuffle (`bool`):
|
292 |
+
Whether to shuffle the vectors in the token map. Defaults to False.
|
293 |
+
prop_tokens_to_load (`float`):
|
294 |
+
The proportion of tokens to load from the token map. Defaults to 1.0.
|
295 |
+
Returns:
|
296 |
+
`str`: The processed text.
|
297 |
+
"""
|
298 |
+
if isinstance(text, list):
|
299 |
+
output = []
|
300 |
+
for i in range(len(text)):
|
301 |
+
output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle))
|
302 |
+
return output
|
303 |
+
for placeholder_token in self.token_map:
|
304 |
+
if placeholder_token in text:
|
305 |
+
tokens = self.token_map[placeholder_token]
|
306 |
+
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
|
307 |
+
if vector_shuffle:
|
308 |
+
tokens = copy.copy(tokens)
|
309 |
+
random.shuffle(tokens)
|
310 |
+
text = text.replace(placeholder_token, " ".join(tokens))
|
311 |
+
return text
|
312 |
+
|
313 |
+
def __call__(self, text, *args, vector_shuffle=False, prop_tokens_to_load=1.0, **kwargs):
|
314 |
+
"""Wrapper around [`~transformers.tokenization_utils.PreTrainedTokenizerBase.__call__`] method
|
315 |
+
but first replace placeholder tokens in text with the tokens in the token map.
|
316 |
+
Returns:
|
317 |
+
[`~transformers.tokenization_utils_base.BatchEncoding`]
|
318 |
+
"""
|
319 |
+
return super().__call__(
|
320 |
+
self.replace_placeholder_tokens_in_text(
|
321 |
+
text,
|
322 |
+
vector_shuffle=vector_shuffle,
|
323 |
+
prop_tokens_to_load=prop_tokens_to_load,
|
324 |
+
),
|
325 |
+
*args,
|
326 |
+
**kwargs,
|
327 |
+
)
|
328 |
+
|
329 |
+
def encode(self, text, *args, vector_shuffle=False, prop_tokens_to_load=1.0, **kwargs):
|
330 |
+
"""Wrapper around the tokenizer's [`transformers.tokenization_utils.PreTrainedTokenizerBase.encode`] method
|
331 |
+
but first replaces placeholder tokens in text with the tokens in the token map.
|
332 |
+
Arguments:
|
333 |
+
text (`str`):
|
334 |
+
The text to be encoded.
|
335 |
+
*args:
|
336 |
+
The arguments to be passed to the tokenizer's `encode` method.
|
337 |
+
vector_shuffle (`bool`):
|
338 |
+
Whether to shuffle the vectors in the token map. Defaults to False.
|
339 |
+
prop_tokens_to_load (`float`):
|
340 |
+
The proportion of tokens to load from the token map. Defaults to 1.0.
|
341 |
+
**kwargs:
|
342 |
+
The keyword arguments to be passed to the tokenizer's `encode` method.
|
343 |
+
Returns:
|
344 |
+
List[`int`]: sequence of ids (integer)
|
345 |
+
"""
|
346 |
+
return super().encode(
|
347 |
+
self.replace_placeholder_tokens_in_text(
|
348 |
+
text,
|
349 |
+
vector_shuffle=vector_shuffle,
|
350 |
+
prop_tokens_to_load=prop_tokens_to_load,
|
351 |
+
),
|
352 |
+
*args,
|
353 |
+
**kwargs,
|
354 |
+
)
|