File size: 7,490 Bytes
d8e2f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import warnings
from typing import List, Optional, Union

import numpy as np
import PIL
import torch
from PIL import Image

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate


class VaeImageProcessor(ConfigMixin):
    """
    Image Processor for VAE

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this
            factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1]
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
    def numpy_to_pt(images):
        """
        Convert a numpy image to a pytorch tensor
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
    def pt_to_numpy(images):
        """
        Convert a pytorch tensor to a numpy image
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
    def normalize(images):
        """
        Normalize an image array to [-1,1]
        """
        return 2.0 * images - 1.0

    @staticmethod
    def denormalize(images):
        """
        Denormalize an image array to [0,1]
        """
        return (images / 2 + 0.5).clamp(0, 1)

    def resize(self, images: PIL.Image.Image) -> PIL.Image.Image:
        """
        Resize a PIL image. Both height and width will be downscaled to the next integer multiple of `vae_scale_factor`
        """
        w, h = images.size
        w, h = (x - x % self.config.vae_scale_factor for x in (w, h))  # resize to integer multiple of vae_scale_factor
        images = images.resize((w, h), resample=PIL_INTERPOLATION[self.config.resample])
        return images

    def preprocess(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
    ) -> torch.Tensor:
        """
        Preprocess the image input, accepted formats are PIL images, numpy arrays or pytorch tensors"
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
            if self.config.do_resize:
                image = [self.resize(i) for i in image]
            image = [np.array(i).astype(np.float32) / 255.0 for i in image]
            image = np.stack(image, axis=0)  # to np
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
            image = self.numpy_to_pt(image)
            _, _, height, width = image.shape
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
                raise ValueError(
                    f"Currently we only support resizing for PIL image - please resize your numpy array to be divisible by {self.config.vae_scale_factor}"
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
            _, _, height, width = image.shape
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
                raise ValueError(
                    f"Currently we only support resizing for PIL image - please resize your pytorch tensor to be divisible by {self.config.vae_scale_factor}"
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        # expected range [0,1], normalize to [-1,1]
        do_normalize = self.config.do_normalize
        if image.min() < 0:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

        return image

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
    ):
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image

        if output_type == "pil":
            return self.numpy_to_pil(image)