|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-base-finetuned-midv-holo-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-midv-holo-500 |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8322 |
|
- Accuracy: 0.4264 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 1925 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 1.2647 | 0.0405 | 78 | 1.2009 | 0.5736 | |
|
| 1.3169 | 1.0405 | 156 | 1.2652 | 0.5078 | |
|
| 1.3004 | 2.0405 | 234 | 1.2036 | 0.5736 | |
|
| 1.1562 | 3.0405 | 312 | 1.1888 | 0.5736 | |
|
| 1.265 | 4.0405 | 390 | 1.2808 | 0.4922 | |
|
| 1.1946 | 5.0405 | 468 | 1.3394 | 0.3295 | |
|
| 1.1222 | 6.0405 | 546 | 1.3204 | 0.5 | |
|
| 1.0244 | 7.0405 | 624 | 1.3697 | 0.3643 | |
|
| 1.1604 | 8.0405 | 702 | 1.3813 | 0.4535 | |
|
| 0.8901 | 9.0405 | 780 | 1.4395 | 0.4225 | |
|
| 0.6032 | 10.0405 | 858 | 1.6609 | 0.4535 | |
|
| 0.6889 | 11.0405 | 936 | 1.7041 | 0.3605 | |
|
| 0.5777 | 12.0405 | 1014 | 1.9075 | 0.3915 | |
|
| 0.4317 | 13.0405 | 1092 | 1.6528 | 0.4690 | |
|
| 0.5087 | 14.0405 | 1170 | 1.6126 | 0.4845 | |
|
| 0.1257 | 15.0405 | 1248 | 2.0637 | 0.4147 | |
|
| 0.3774 | 16.0405 | 1326 | 2.5347 | 0.3721 | |
|
| 0.1259 | 17.0405 | 1404 | 2.6514 | 0.3760 | |
|
| 0.2158 | 18.0405 | 1482 | 2.4290 | 0.4806 | |
|
| 0.0505 | 19.0405 | 1560 | 2.6998 | 0.4225 | |
|
| 0.0563 | 20.0405 | 1638 | 2.6474 | 0.4225 | |
|
| 0.0671 | 21.0405 | 1716 | 2.6487 | 0.4496 | |
|
| 0.1847 | 22.0405 | 1794 | 2.7012 | 0.4496 | |
|
| 0.0041 | 23.0405 | 1872 | 2.7938 | 0.4341 | |
|
| 0.0079 | 24.0275 | 1925 | 2.8322 | 0.4264 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu118 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|