vitus9988's picture
End of training
fbe7146 verified
|
raw
history blame
2.18 kB
metadata
base_model: klue/roberta-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: klue_roberta_small_ner_identified
    results: []

klue_roberta_small_ner_identified

This model is a fine-tuned version of klue/roberta-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0128
  • Precision: 0.9866
  • Recall: 1.0
  • F1: 0.9932
  • Accuracy: 0.9995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 15 0.1702 0.0767 0.1905 0.1094 0.9585
No log 2.0 30 0.0861 0.4163 0.5748 0.4829 0.9793
No log 3.0 45 0.0443 0.7741 0.8741 0.8211 0.9919
No log 4.0 60 0.0262 0.8984 0.9626 0.9294 0.9970
No log 5.0 75 0.0176 0.9734 0.9966 0.9849 0.9994
No log 6.0 90 0.0147 0.9767 0.9966 0.9865 0.9994
No log 7.0 105 0.0132 0.9866 1.0 0.9932 0.9995
No log 8.0 120 0.0128 0.9866 1.0 0.9932 0.9995

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1