Update README.md
Browse files
README.md
CHANGED
|
@@ -29,39 +29,7 @@ This model demonstrates a road segmentation implemented using **deep learning**
|
|
| 29 |
- **rs1-high.pth**: The highest performer model with a loss of **0.07%**.
|
| 30 |
|
| 31 |
## Model Structure
|
| 32 |
-
|
| 33 |
-
===============================================================================================
|
| 34 |
-
Layer (type:depth-idx) Output Shape Param #
|
| 35 |
-
===============================================================================================
|
| 36 |
-
RoadSegmentationModel [16, 1, 256, 256] --
|
| 37 |
-
├─FeatureListNet: 1-1 [16, 64, 128, 128] --
|
| 38 |
-
│ └─Conv2d: 2-1 [16, 64, 128, 128] 9,408
|
| 39 |
-
│ └─BatchNorm2d: 2-2 [16, 64, 128, 128] 128
|
| 40 |
-
│ └─ReLU: 2-3 [16, 64, 128, 128] --
|
| 41 |
-
│ └─MaxPool2d: 2-4 [16, 64, 64, 64] --
|
| 42 |
-
│ └─Sequential: 2-5 [16, 256, 64, 64] --
|
| 43 |
-
│ │ └─Bottleneck: 3-1 [16, 256, 64, 64] 75,008
|
| 44 |
-
│ │ └─Bottleneck: 3-2 [16, 256, 64, 64] 70,400
|
| 45 |
-
│ │ └─Bottleneck: 3-3 [16, 256, 64, 64] 70,400
|
| 46 |
-
│ └─Sequential: 2-6 [16, 512, 32, 32] --
|
| 47 |
-
│ │ └─Bottleneck: 3-4 [16, 512, 32, 32] 379,392
|
| 48 |
-
│ │ └─Bottleneck: 3-5 [16, 512, 32, 32] 280,064
|
| 49 |
-
│ │ └─Bottleneck: 3-6 [16, 512, 32, 32] 280,064
|
| 50 |
-
│ │ └─Bottleneck: 3-7 [16, 512, 32, 32] 280,064
|
| 51 |
-
│ └─Sequential: 2-7 [16, 1024, 16, 16] --
|
| 52 |
-
│ │ └─Bottleneck: 3-8 [16, 1024, 16, 16] 1,512,448
|
| 53 |
-
│ │ └─Bottleneck: 3-9 [16, 1024, 16, 16] 1,117,184
|
| 54 |
-
│ │ └─Bottleneck: 3-10 [16, 1024, 16, 16] 1,117,184
|
| 55 |
-
│ │ └─Bottleneck: 3-11 [16, 1024, 16, 16] 1,117,184
|
| 56 |
-
│ │ └─Bottleneck: 3-12 [16, 1024, 16, 16] 1,117,184
|
| 57 |
-
│ │ └─Bottleneck: 3-13 [16, 1024, 16, 16] 1,117,184
|
| 58 |
-
...
|
| 59 |
-
Input size (MB): 12.58
|
| 60 |
-
Forward/backward pass size (MB): 4731.17
|
| 61 |
-
Params size (MB): 272.32
|
| 62 |
-
Estimated Total Size (MB): 5016.08
|
| 63 |
-
===============================================================================================
|
| 64 |
-
|
| 65 |
## Features
|
| 66 |
1. ### Architecture
|
| 67 |
- Basic **Resnet50** model with few upsampling and batch normalisation layers.
|
|
|
|
| 29 |
- **rs1-high.pth**: The highest performer model with a loss of **0.07%**.
|
| 30 |
|
| 31 |
## Model Structure
|
| 32 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
## Features
|
| 34 |
1. ### Architecture
|
| 35 |
- Basic **Resnet50** model with few upsampling and batch normalisation layers.
|