vishal-adithya commited on
Commit
bbe3411
·
verified ·
1 Parent(s): a886443

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -1
README.md CHANGED
@@ -24,10 +24,44 @@ tags:
24
 
25
  This model demonstrates a road segmentation implemented using **deep learning** techniques which predicts the road regions in the input image and returns it in a grayscale format.
26
 
27
- ## Model Structure
28
  - **rs1-low.pth**: The lowest performer model with a loss of **0.69%**.
29
  - **rs1-high.pth**: The highest performer model with a loss of **0.07%**.
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  ## Features
32
  1. ### Architecture
33
  - Basic **Resnet50** model with few upsampling and batch normalisation layers.
 
24
 
25
  This model demonstrates a road segmentation implemented using **deep learning** techniques which predicts the road regions in the input image and returns it in a grayscale format.
26
 
27
+ ## Models
28
  - **rs1-low.pth**: The lowest performer model with a loss of **0.69%**.
29
  - **rs1-high.pth**: The highest performer model with a loss of **0.07%**.
30
 
31
+ ## Model Structure
32
+
33
+ ===============================================================================================
34
+ Layer (type:depth-idx) Output Shape Param #
35
+ ===============================================================================================
36
+ RoadSegmentationModel [16, 1, 256, 256] --
37
+ ├─FeatureListNet: 1-1 [16, 64, 128, 128] --
38
+ │ └─Conv2d: 2-1 [16, 64, 128, 128] 9,408
39
+ │ └─BatchNorm2d: 2-2 [16, 64, 128, 128] 128
40
+ │ └─ReLU: 2-3 [16, 64, 128, 128] --
41
+ │ └─MaxPool2d: 2-4 [16, 64, 64, 64] --
42
+ │ └─Sequential: 2-5 [16, 256, 64, 64] --
43
+ │ │ └─Bottleneck: 3-1 [16, 256, 64, 64] 75,008
44
+ │ │ └─Bottleneck: 3-2 [16, 256, 64, 64] 70,400
45
+ │ │ └─Bottleneck: 3-3 [16, 256, 64, 64] 70,400
46
+ │ └─Sequential: 2-6 [16, 512, 32, 32] --
47
+ │ │ └─Bottleneck: 3-4 [16, 512, 32, 32] 379,392
48
+ │ │ └─Bottleneck: 3-5 [16, 512, 32, 32] 280,064
49
+ │ │ └─Bottleneck: 3-6 [16, 512, 32, 32] 280,064
50
+ │ │ └─Bottleneck: 3-7 [16, 512, 32, 32] 280,064
51
+ │ └─Sequential: 2-7 [16, 1024, 16, 16] --
52
+ │ │ └─Bottleneck: 3-8 [16, 1024, 16, 16] 1,512,448
53
+ │ │ └─Bottleneck: 3-9 [16, 1024, 16, 16] 1,117,184
54
+ │ │ └─Bottleneck: 3-10 [16, 1024, 16, 16] 1,117,184
55
+ │ │ └─Bottleneck: 3-11 [16, 1024, 16, 16] 1,117,184
56
+ │ │ └─Bottleneck: 3-12 [16, 1024, 16, 16] 1,117,184
57
+ │ │ └─Bottleneck: 3-13 [16, 1024, 16, 16] 1,117,184
58
+ ...
59
+ Input size (MB): 12.58
60
+ Forward/backward pass size (MB): 4731.17
61
+ Params size (MB): 272.32
62
+ Estimated Total Size (MB): 5016.08
63
+ ===============================================================================================
64
+
65
  ## Features
66
  1. ### Architecture
67
  - Basic **Resnet50** model with few upsampling and batch normalisation layers.