results / README.md
viraxeva's picture
End of training
0a88fc4 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: results
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.59375

results

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1778
  • Accuracy: 0.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7091 1.0 40 1.5245 0.4313
1.2646 2.0 80 1.3654 0.5
0.8405 3.0 120 1.2695 0.4938
0.441 4.0 160 1.1778 0.5938
0.2931 5.0 200 1.3847 0.5625
0.1199 6.0 240 1.4813 0.5687
0.0417 7.0 280 1.5159 0.5938
0.0309 8.0 320 1.4851 0.6125
0.0245 9.0 360 1.5161 0.6188
0.021 10.0 400 1.5315 0.6188
0.0193 11.0 440 1.5456 0.6438
0.0174 12.0 480 1.5714 0.6312
0.023 13.0 520 1.5815 0.6312
0.0216 14.0 560 1.5951 0.6375
0.0202 15.0 600 1.5938 0.6312

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1