SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vineet10/fm")
# Run inference
sentences = [
'The term of this Agreement shall continue until terminated by either party in accordance with',
'What is the term of the Agreement?',
'What events constitute Force Majeure under this Agreement?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3333 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3333 |
cosine_accuracy@10 | 0.6667 |
cosine_precision@1 | 0.3333 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0667 |
cosine_precision@10 | 0.0667 |
cosine_recall@1 | 0.3333 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3333 |
cosine_recall@10 | 0.6667 |
cosine_ndcg@10 | 0.4337 |
cosine_mrr@10 | 0.3704 |
cosine_map@100 | 0.3862 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3333 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3333 |
cosine_accuracy@10 | 0.6667 |
cosine_precision@1 | 0.3333 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0667 |
cosine_precision@10 | 0.0667 |
cosine_recall@1 | 0.3333 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3333 |
cosine_recall@10 | 0.6667 |
cosine_ndcg@10 | 0.4337 |
cosine_mrr@10 | 0.3704 |
cosine_map@100 | 0.387 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3333 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3333 |
cosine_accuracy@10 | 0.6667 |
cosine_precision@1 | 0.3333 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0667 |
cosine_precision@10 | 0.0667 |
cosine_recall@1 | 0.3333 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3333 |
cosine_recall@10 | 0.6667 |
cosine_ndcg@10 | 0.4337 |
cosine_mrr@10 | 0.3704 |
cosine_map@100 | 0.3879 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3333 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3333 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.3333 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0667 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.3333 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3333 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.5524 |
cosine_mrr@10 | 0.4259 |
cosine_map@100 | 0.4259 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3333 |
cosine_accuracy@3 | 0.6667 |
cosine_accuracy@5 | 0.6667 |
cosine_accuracy@10 | 0.6667 |
cosine_precision@1 | 0.3333 |
cosine_precision@3 | 0.2222 |
cosine_precision@5 | 0.1333 |
cosine_precision@10 | 0.0667 |
cosine_recall@1 | 0.3333 |
cosine_recall@3 | 0.6667 |
cosine_recall@5 | 0.6667 |
cosine_recall@10 | 0.6667 |
cosine_ndcg@10 | 0.5 |
cosine_mrr@10 | 0.4444 |
cosine_map@100 | 0.4701 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 26 training samples
- Columns:
context
andquestion
- Approximate statistics based on the first 1000 samples:
context question type string string details - min: 2 tokens
- mean: 19.19 tokens
- max: 28 tokens
- min: 4 tokens
- mean: 11.27 tokens
- max: 18 tokens
- Samples:
context question Answer: Deepak Babbar makes the final payment of Rs 2,60,000 at the time of quashing FIR
MOU?
This Agreement is governed by the laws of Indiana, and any disputes arising out of or in
Which law governs this Agreement, and where would disputes be resolved?
Answer: After the first motion, both parties must file petitions for quashing FIRs and
according to the MOU?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
0 | 0 | 0.4259 | 0.3879 | 0.3870 | 0.4701 | 0.3862 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vineet10/fm
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.333
- Cosine Accuracy@3 on dim 768self-reported0.333
- Cosine Accuracy@5 on dim 768self-reported0.333
- Cosine Accuracy@10 on dim 768self-reported0.667
- Cosine Precision@1 on dim 768self-reported0.333
- Cosine Precision@3 on dim 768self-reported0.111
- Cosine Precision@5 on dim 768self-reported0.067
- Cosine Precision@10 on dim 768self-reported0.067
- Cosine Recall@1 on dim 768self-reported0.333
- Cosine Recall@3 on dim 768self-reported0.333