SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vin00d/snowflake-arctic-legal-ft-1")
# Run inference
sentences = [
"How does a fraudulent transfer relate to a debtor's intent in bankruptcy cases?",
"A serious crime, usually punishable by at least one year in prison.\nFile\nTo place a paper in the official custody of the clerk of court to enter into the files or records\nof a case.\nFraudulent transfer\nA transfer of a debtor's property made with intent to defraud or for which the debtor\nreceives less than the transferred property's value.\nFresh start\nThe characterization of a debtor's status after bankruptcy, i.e., free of most debts. (Giving\ndebtors a fresh start is one purpose of the Bankruptcy Code.)\nG\nGrand jury\nA body of 16-23 citizens who listen to evidence of criminal allegations, which is presented by\nthe prosecutors, and determine whether there is probable cause to believe an individual",
'-3-\nArgument: A reason given in proof or rebuttal to persuade a judge or jury.\nAt Issue: Whenever the parties to an action come to a point in the pleadings or argument which\nis affirmed on one side and denied on the other, the points are said to be "at issue".\nAttachment: The taking of property into legal custody by an enforcement officer (See specialty\nsection: Recovery of Chattel).\nAttestation: The act of witnessing an instrument in writing at the request of the party making the\ninstrument and signing it as a witness.\nAttorney of Record: Attorney whose name appears in the court’s records or files of a case.\nAward: A decision of an Arbitrator, judge or jury.\n-B-',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9318 |
cosine_accuracy@3 | 0.9318 |
cosine_accuracy@5 | 0.9545 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9318 |
cosine_precision@3 | 0.3106 |
cosine_precision@5 | 0.1909 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9318 |
cosine_recall@3 | 0.9318 |
cosine_recall@5 | 0.9545 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9565 |
cosine_mrr@10 | 0.9438 |
cosine_map@100 | 0.9438 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 210 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 210 samples:
sentence_0 sentence_1 type string string details - min: 9 tokens
- mean: 17.36 tokens
- max: 33 tokens
- min: 4 tokens
- mean: 122.9 tokens
- max: 192 tokens
- Samples:
sentence_0 sentence_1 What is the purpose of the glossary of common legal terms provided in the context?
GLOSSARY ‐ COMMON LEGAL TERMS
NOTE: The following definitions are not legal definitions. Rather, these definitions are
intended to give you a general idea of the meanings of common legal words. For
comprehensive Definitions of legal terms, you may wish to consult a legal dictionary
“Black’s Law Dictionary” is one such legal dictionary which is usually available at
most law libraries.
This glossary of common legal terms is also available on‐line at:
http://www.nycourts.gov/lawlibraries/glossary.shtml
ADDITIONAL ON‐LINE RESOURCES:
http://www.nolo.com/glossary.cfm
Nolo’s on‐line legal dictionary.
http://www.law‐dictionary.org/
Free on‐line legal dictionary search engine.
http://www.law.cornell.edu/wexWhere can one find a comprehensive legal dictionary for more detailed definitions of legal terms?
GLOSSARY ‐ COMMON LEGAL TERMS
NOTE: The following definitions are not legal definitions. Rather, these definitions are
intended to give you a general idea of the meanings of common legal words. For
comprehensive Definitions of legal terms, you may wish to consult a legal dictionary
“Black’s Law Dictionary” is one such legal dictionary which is usually available at
most law libraries.
This glossary of common legal terms is also available on‐line at:
http://www.nycourts.gov/lawlibraries/glossary.shtml
ADDITIONAL ON‐LINE RESOURCES:
http://www.nolo.com/glossary.cfm
Nolo’s on‐line legal dictionary.
http://www.law‐dictionary.org/
Free on‐line legal dictionary search engine.
http://www.law.cornell.edu/wexWhat organization maintains the legal dictionary and encyclopedia mentioned in the context?
Legal dictionary and encyclopedia maintained by the
Legal Information Institute at Cornell Law School. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 21 | 0.9240 |
2.0 | 42 | 0.9628 |
2.3810 | 50 | 0.9628 |
3.0 | 63 | 0.9502 |
4.0 | 84 | 0.9569 |
4.7619 | 100 | 0.9563 |
5.0 | 105 | 0.9556 |
6.0 | 126 | 0.9569 |
7.0 | 147 | 0.9555 |
7.1429 | 150 | 0.9555 |
8.0 | 168 | 0.9565 |
9.0 | 189 | 0.9565 |
9.5238 | 200 | 0.9565 |
10.0 | 210 | 0.9565 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vin00d/snowflake-arctic-legal-ft-1
Base model
Snowflake/snowflake-arctic-embed-lSpace using vin00d/snowflake-arctic-legal-ft-1 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.932
- Cosine Accuracy@3 on Unknownself-reported0.932
- Cosine Accuracy@5 on Unknownself-reported0.955
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.932
- Cosine Precision@3 on Unknownself-reported0.311
- Cosine Precision@5 on Unknownself-reported0.191
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.932
- Cosine Recall@3 on Unknownself-reported0.932