viggypoker1 commited on
Commit
61fe7a2
·
verified ·
1 Parent(s): 7a0ab17

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:6300
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ widget:
15
+ - source_sentence: Our effective tax rate for fiscal years 2023 and 2022 was 19% and
16
+ 13%, respectively.
17
+ sentences:
18
+ - What does the Corporate and Other segment include in its composition?
19
+ - What was the effective tax rate for Microsoft in fiscal year 2023?
20
+ - What roles did Elizabeth Rutledge hold before being appointed as Chief Marketing
21
+ Officer in February 2018?
22
+ - source_sentence: Many factors are considered when assessing whether it is more likely
23
+ than not that the deferred tax assets will be realized, including recent cumulative
24
+ earnings, expectations of future taxable income, carryforward periods and other
25
+ relevant quantitative and qualitative factors.
26
+ sentences:
27
+ - What factors are considered when evaluating the realization of deferred tax assets?
28
+ - What are the contents of Item 8 in the financial document?
29
+ - Are goodwill and indefinite-lived intangible assets amortized?
30
+ - source_sentence: Cost of net revenues represents costs associated with customer
31
+ support, site operations, and payment processing. Significant components of these
32
+ costs primarily consist of employee compensation (including stock-based compensation),
33
+ contractor costs, facilities costs, depreciation of equipment and amortization
34
+ expense, bank transaction fees, credit card interchange and assessment fees, authentication
35
+ costs, shipping costs and digital services tax.
36
+ sentences:
37
+ - What was the total percentage of U.S. dialysis patient service revenues coming
38
+ from government-based programs in 2023?
39
+ - What are the key components of cost of net revenues?
40
+ - What elements define Ford Credit's balance sheet liquidity profile?
41
+ - source_sentence: Net revenue from outside of the United States decreased 15.5% to
42
+ $34.9 billion in fiscal year 2023.
43
+ sentences:
44
+ - How did the company's net revenue perform internationally in fiscal year 2023?
45
+ - What was the fair value of money market mutual funds measured at as of January
46
+ 31, 2023 and how was it categorized in the fair value hierarchy?
47
+ - How much did professional services expenses increase in 2023 from the previous
48
+ year?
49
+ - source_sentence: Marketplace revenue increased $86.3 million to $2.0 billion in
50
+ the year ended December 31, 2023 compared to the year ended December 31, 2022.
51
+ sentences:
52
+ - What were the main factors considered in the audit process to evaluate the self-insurance
53
+ reserve?
54
+ - How much did Marketplace revenue increase in the year ended December 31, 2023?
55
+ - Why did operations and support expenses decrease in 2023, and what factors offset
56
+ this decrease?
57
+ pipeline_tag: sentence-similarity
58
+ library_name: sentence-transformers
59
+ metrics:
60
+ - cosine_accuracy@1
61
+ - cosine_accuracy@3
62
+ - cosine_accuracy@5
63
+ - cosine_accuracy@10
64
+ - cosine_precision@1
65
+ - cosine_precision@3
66
+ - cosine_precision@5
67
+ - cosine_precision@10
68
+ - cosine_recall@1
69
+ - cosine_recall@3
70
+ - cosine_recall@5
71
+ - cosine_recall@10
72
+ - cosine_ndcg@10
73
+ - cosine_mrr@10
74
+ - cosine_map@100
75
+ model-index:
76
+ - name: BGE base Financial Matryoshka
77
+ results:
78
+ - task:
79
+ type: information-retrieval
80
+ name: Information Retrieval
81
+ dataset:
82
+ name: dim 768
83
+ type: dim_768
84
+ metrics:
85
+ - type: cosine_accuracy@1
86
+ value: 0.7
87
+ name: Cosine Accuracy@1
88
+ - type: cosine_accuracy@3
89
+ value: 0.8285714285714286
90
+ name: Cosine Accuracy@3
91
+ - type: cosine_accuracy@5
92
+ value: 0.8785714285714286
93
+ name: Cosine Accuracy@5
94
+ - type: cosine_accuracy@10
95
+ value: 0.9085714285714286
96
+ name: Cosine Accuracy@10
97
+ - type: cosine_precision@1
98
+ value: 0.7
99
+ name: Cosine Precision@1
100
+ - type: cosine_precision@3
101
+ value: 0.27619047619047615
102
+ name: Cosine Precision@3
103
+ - type: cosine_precision@5
104
+ value: 0.17571428571428568
105
+ name: Cosine Precision@5
106
+ - type: cosine_precision@10
107
+ value: 0.09085714285714284
108
+ name: Cosine Precision@10
109
+ - type: cosine_recall@1
110
+ value: 0.7
111
+ name: Cosine Recall@1
112
+ - type: cosine_recall@3
113
+ value: 0.8285714285714286
114
+ name: Cosine Recall@3
115
+ - type: cosine_recall@5
116
+ value: 0.8785714285714286
117
+ name: Cosine Recall@5
118
+ - type: cosine_recall@10
119
+ value: 0.9085714285714286
120
+ name: Cosine Recall@10
121
+ - type: cosine_ndcg@10
122
+ value: 0.8070713920635244
123
+ name: Cosine Ndcg@10
124
+ - type: cosine_mrr@10
125
+ value: 0.774145124716553
126
+ name: Cosine Mrr@10
127
+ - type: cosine_map@100
128
+ value: 0.7778677437532947
129
+ name: Cosine Map@100
130
+ - task:
131
+ type: information-retrieval
132
+ name: Information Retrieval
133
+ dataset:
134
+ name: dim 512
135
+ type: dim_512
136
+ metrics:
137
+ - type: cosine_accuracy@1
138
+ value: 0.6942857142857143
139
+ name: Cosine Accuracy@1
140
+ - type: cosine_accuracy@3
141
+ value: 0.83
142
+ name: Cosine Accuracy@3
143
+ - type: cosine_accuracy@5
144
+ value: 0.8728571428571429
145
+ name: Cosine Accuracy@5
146
+ - type: cosine_accuracy@10
147
+ value: 0.9042857142857142
148
+ name: Cosine Accuracy@10
149
+ - type: cosine_precision@1
150
+ value: 0.6942857142857143
151
+ name: Cosine Precision@1
152
+ - type: cosine_precision@3
153
+ value: 0.27666666666666667
154
+ name: Cosine Precision@3
155
+ - type: cosine_precision@5
156
+ value: 0.17457142857142854
157
+ name: Cosine Precision@5
158
+ - type: cosine_precision@10
159
+ value: 0.09042857142857143
160
+ name: Cosine Precision@10
161
+ - type: cosine_recall@1
162
+ value: 0.6942857142857143
163
+ name: Cosine Recall@1
164
+ - type: cosine_recall@3
165
+ value: 0.83
166
+ name: Cosine Recall@3
167
+ - type: cosine_recall@5
168
+ value: 0.8728571428571429
169
+ name: Cosine Recall@5
170
+ - type: cosine_recall@10
171
+ value: 0.9042857142857142
172
+ name: Cosine Recall@10
173
+ - type: cosine_ndcg@10
174
+ value: 0.8031148082413071
175
+ name: Cosine Ndcg@10
176
+ - type: cosine_mrr@10
177
+ value: 0.770209750566893
178
+ name: Cosine Mrr@10
179
+ - type: cosine_map@100
180
+ value: 0.7742865136346454
181
+ name: Cosine Map@100
182
+ - task:
183
+ type: information-retrieval
184
+ name: Information Retrieval
185
+ dataset:
186
+ name: dim 256
187
+ type: dim_256
188
+ metrics:
189
+ - type: cosine_accuracy@1
190
+ value: 0.6828571428571428
191
+ name: Cosine Accuracy@1
192
+ - type: cosine_accuracy@3
193
+ value: 0.8242857142857143
194
+ name: Cosine Accuracy@3
195
+ - type: cosine_accuracy@5
196
+ value: 0.8657142857142858
197
+ name: Cosine Accuracy@5
198
+ - type: cosine_accuracy@10
199
+ value: 0.9042857142857142
200
+ name: Cosine Accuracy@10
201
+ - type: cosine_precision@1
202
+ value: 0.6828571428571428
203
+ name: Cosine Precision@1
204
+ - type: cosine_precision@3
205
+ value: 0.2747619047619047
206
+ name: Cosine Precision@3
207
+ - type: cosine_precision@5
208
+ value: 0.17314285714285713
209
+ name: Cosine Precision@5
210
+ - type: cosine_precision@10
211
+ value: 0.09042857142857143
212
+ name: Cosine Precision@10
213
+ - type: cosine_recall@1
214
+ value: 0.6828571428571428
215
+ name: Cosine Recall@1
216
+ - type: cosine_recall@3
217
+ value: 0.8242857142857143
218
+ name: Cosine Recall@3
219
+ - type: cosine_recall@5
220
+ value: 0.8657142857142858
221
+ name: Cosine Recall@5
222
+ - type: cosine_recall@10
223
+ value: 0.9042857142857142
224
+ name: Cosine Recall@10
225
+ - type: cosine_ndcg@10
226
+ value: 0.7969921030232127
227
+ name: Cosine Ndcg@10
228
+ - type: cosine_mrr@10
229
+ value: 0.762270975056689
230
+ name: Cosine Mrr@10
231
+ - type: cosine_map@100
232
+ value: 0.7658165867130817
233
+ name: Cosine Map@100
234
+ - task:
235
+ type: information-retrieval
236
+ name: Information Retrieval
237
+ dataset:
238
+ name: dim 128
239
+ type: dim_128
240
+ metrics:
241
+ - type: cosine_accuracy@1
242
+ value: 0.68
243
+ name: Cosine Accuracy@1
244
+ - type: cosine_accuracy@3
245
+ value: 0.8085714285714286
246
+ name: Cosine Accuracy@3
247
+ - type: cosine_accuracy@5
248
+ value: 0.8514285714285714
249
+ name: Cosine Accuracy@5
250
+ - type: cosine_accuracy@10
251
+ value: 0.8842857142857142
252
+ name: Cosine Accuracy@10
253
+ - type: cosine_precision@1
254
+ value: 0.68
255
+ name: Cosine Precision@1
256
+ - type: cosine_precision@3
257
+ value: 0.2695238095238095
258
+ name: Cosine Precision@3
259
+ - type: cosine_precision@5
260
+ value: 0.17028571428571426
261
+ name: Cosine Precision@5
262
+ - type: cosine_precision@10
263
+ value: 0.08842857142857141
264
+ name: Cosine Precision@10
265
+ - type: cosine_recall@1
266
+ value: 0.68
267
+ name: Cosine Recall@1
268
+ - type: cosine_recall@3
269
+ value: 0.8085714285714286
270
+ name: Cosine Recall@3
271
+ - type: cosine_recall@5
272
+ value: 0.8514285714285714
273
+ name: Cosine Recall@5
274
+ - type: cosine_recall@10
275
+ value: 0.8842857142857142
276
+ name: Cosine Recall@10
277
+ - type: cosine_ndcg@10
278
+ value: 0.7840025892817639
279
+ name: Cosine Ndcg@10
280
+ - type: cosine_mrr@10
281
+ value: 0.751556689342403
282
+ name: Cosine Mrr@10
283
+ - type: cosine_map@100
284
+ value: 0.7563834249655896
285
+ name: Cosine Map@100
286
+ - task:
287
+ type: information-retrieval
288
+ name: Information Retrieval
289
+ dataset:
290
+ name: dim 64
291
+ type: dim_64
292
+ metrics:
293
+ - type: cosine_accuracy@1
294
+ value: 0.6371428571428571
295
+ name: Cosine Accuracy@1
296
+ - type: cosine_accuracy@3
297
+ value: 0.7814285714285715
298
+ name: Cosine Accuracy@3
299
+ - type: cosine_accuracy@5
300
+ value: 0.8271428571428572
301
+ name: Cosine Accuracy@5
302
+ - type: cosine_accuracy@10
303
+ value: 0.8728571428571429
304
+ name: Cosine Accuracy@10
305
+ - type: cosine_precision@1
306
+ value: 0.6371428571428571
307
+ name: Cosine Precision@1
308
+ - type: cosine_precision@3
309
+ value: 0.2604761904761905
310
+ name: Cosine Precision@3
311
+ - type: cosine_precision@5
312
+ value: 0.1654285714285714
313
+ name: Cosine Precision@5
314
+ - type: cosine_precision@10
315
+ value: 0.08728571428571427
316
+ name: Cosine Precision@10
317
+ - type: cosine_recall@1
318
+ value: 0.6371428571428571
319
+ name: Cosine Recall@1
320
+ - type: cosine_recall@3
321
+ value: 0.7814285714285715
322
+ name: Cosine Recall@3
323
+ - type: cosine_recall@5
324
+ value: 0.8271428571428572
325
+ name: Cosine Recall@5
326
+ - type: cosine_recall@10
327
+ value: 0.8728571428571429
328
+ name: Cosine Recall@10
329
+ - type: cosine_ndcg@10
330
+ value: 0.7566246856089167
331
+ name: Cosine Ndcg@10
332
+ - type: cosine_mrr@10
333
+ value: 0.7193163265306118
334
+ name: Cosine Mrr@10
335
+ - type: cosine_map@100
336
+ value: 0.7237471572016445
337
+ name: Cosine Map@100
338
+ ---
339
+
340
+ # BGE base Financial Matryoshka
341
+
342
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
343
+
344
+ ## Model Details
345
+
346
+ ### Model Description
347
+ - **Model Type:** Sentence Transformer
348
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
349
+ - **Maximum Sequence Length:** 512 tokens
350
+ - **Output Dimensionality:** 768 tokens
351
+ - **Similarity Function:** Cosine Similarity
352
+ - **Training Dataset:**
353
+ - json
354
+ - **Language:** en
355
+ - **License:** apache-2.0
356
+
357
+ ### Model Sources
358
+
359
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
360
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
361
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
362
+
363
+ ### Full Model Architecture
364
+
365
+ ```
366
+ SentenceTransformer(
367
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
368
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
369
+ (2): Normalize()
370
+ )
371
+ ```
372
+
373
+ ## Usage
374
+
375
+ ### Direct Usage (Sentence Transformers)
376
+
377
+ First install the Sentence Transformers library:
378
+
379
+ ```bash
380
+ pip install -U sentence-transformers
381
+ ```
382
+
383
+ Then you can load this model and run inference.
384
+ ```python
385
+ from sentence_transformers import SentenceTransformer
386
+
387
+ # Download from the 🤗 Hub
388
+ model = SentenceTransformer("viggypoker1/bge-base-financial-matryoshka")
389
+ # Run inference
390
+ sentences = [
391
+ 'Marketplace revenue increased $86.3 million to $2.0 billion in the year ended December 31, 2023 compared to the year ended December 31, 2022.',
392
+ 'How much did Marketplace revenue increase in the year ended December 31, 2023?',
393
+ 'Why did operations and support expenses decrease in 2023, and what factors offset this decrease?',
394
+ ]
395
+ embeddings = model.encode(sentences)
396
+ print(embeddings.shape)
397
+ # [3, 768]
398
+
399
+ # Get the similarity scores for the embeddings
400
+ similarities = model.similarity(embeddings, embeddings)
401
+ print(similarities.shape)
402
+ # [3, 3]
403
+ ```
404
+
405
+ <!--
406
+ ### Direct Usage (Transformers)
407
+
408
+ <details><summary>Click to see the direct usage in Transformers</summary>
409
+
410
+ </details>
411
+ -->
412
+
413
+ <!--
414
+ ### Downstream Usage (Sentence Transformers)
415
+
416
+ You can finetune this model on your own dataset.
417
+
418
+ <details><summary>Click to expand</summary>
419
+
420
+ </details>
421
+ -->
422
+
423
+ <!--
424
+ ### Out-of-Scope Use
425
+
426
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
427
+ -->
428
+
429
+ ## Evaluation
430
+
431
+ ### Metrics
432
+
433
+ #### Information Retrieval
434
+ * Dataset: `dim_768`
435
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
436
+
437
+ | Metric | Value |
438
+ |:--------------------|:-----------|
439
+ | cosine_accuracy@1 | 0.7 |
440
+ | cosine_accuracy@3 | 0.8286 |
441
+ | cosine_accuracy@5 | 0.8786 |
442
+ | cosine_accuracy@10 | 0.9086 |
443
+ | cosine_precision@1 | 0.7 |
444
+ | cosine_precision@3 | 0.2762 |
445
+ | cosine_precision@5 | 0.1757 |
446
+ | cosine_precision@10 | 0.0909 |
447
+ | cosine_recall@1 | 0.7 |
448
+ | cosine_recall@3 | 0.8286 |
449
+ | cosine_recall@5 | 0.8786 |
450
+ | cosine_recall@10 | 0.9086 |
451
+ | cosine_ndcg@10 | 0.8071 |
452
+ | cosine_mrr@10 | 0.7741 |
453
+ | **cosine_map@100** | **0.7779** |
454
+
455
+ #### Information Retrieval
456
+ * Dataset: `dim_512`
457
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
458
+
459
+ | Metric | Value |
460
+ |:--------------------|:-----------|
461
+ | cosine_accuracy@1 | 0.6943 |
462
+ | cosine_accuracy@3 | 0.83 |
463
+ | cosine_accuracy@5 | 0.8729 |
464
+ | cosine_accuracy@10 | 0.9043 |
465
+ | cosine_precision@1 | 0.6943 |
466
+ | cosine_precision@3 | 0.2767 |
467
+ | cosine_precision@5 | 0.1746 |
468
+ | cosine_precision@10 | 0.0904 |
469
+ | cosine_recall@1 | 0.6943 |
470
+ | cosine_recall@3 | 0.83 |
471
+ | cosine_recall@5 | 0.8729 |
472
+ | cosine_recall@10 | 0.9043 |
473
+ | cosine_ndcg@10 | 0.8031 |
474
+ | cosine_mrr@10 | 0.7702 |
475
+ | **cosine_map@100** | **0.7743** |
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_256`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:-----------|
483
+ | cosine_accuracy@1 | 0.6829 |
484
+ | cosine_accuracy@3 | 0.8243 |
485
+ | cosine_accuracy@5 | 0.8657 |
486
+ | cosine_accuracy@10 | 0.9043 |
487
+ | cosine_precision@1 | 0.6829 |
488
+ | cosine_precision@3 | 0.2748 |
489
+ | cosine_precision@5 | 0.1731 |
490
+ | cosine_precision@10 | 0.0904 |
491
+ | cosine_recall@1 | 0.6829 |
492
+ | cosine_recall@3 | 0.8243 |
493
+ | cosine_recall@5 | 0.8657 |
494
+ | cosine_recall@10 | 0.9043 |
495
+ | cosine_ndcg@10 | 0.797 |
496
+ | cosine_mrr@10 | 0.7623 |
497
+ | **cosine_map@100** | **0.7658** |
498
+
499
+ #### Information Retrieval
500
+ * Dataset: `dim_128`
501
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
502
+
503
+ | Metric | Value |
504
+ |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.68 |
506
+ | cosine_accuracy@3 | 0.8086 |
507
+ | cosine_accuracy@5 | 0.8514 |
508
+ | cosine_accuracy@10 | 0.8843 |
509
+ | cosine_precision@1 | 0.68 |
510
+ | cosine_precision@3 | 0.2695 |
511
+ | cosine_precision@5 | 0.1703 |
512
+ | cosine_precision@10 | 0.0884 |
513
+ | cosine_recall@1 | 0.68 |
514
+ | cosine_recall@3 | 0.8086 |
515
+ | cosine_recall@5 | 0.8514 |
516
+ | cosine_recall@10 | 0.8843 |
517
+ | cosine_ndcg@10 | 0.784 |
518
+ | cosine_mrr@10 | 0.7516 |
519
+ | **cosine_map@100** | **0.7564** |
520
+
521
+ #### Information Retrieval
522
+ * Dataset: `dim_64`
523
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
524
+
525
+ | Metric | Value |
526
+ |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.6371 |
528
+ | cosine_accuracy@3 | 0.7814 |
529
+ | cosine_accuracy@5 | 0.8271 |
530
+ | cosine_accuracy@10 | 0.8729 |
531
+ | cosine_precision@1 | 0.6371 |
532
+ | cosine_precision@3 | 0.2605 |
533
+ | cosine_precision@5 | 0.1654 |
534
+ | cosine_precision@10 | 0.0873 |
535
+ | cosine_recall@1 | 0.6371 |
536
+ | cosine_recall@3 | 0.7814 |
537
+ | cosine_recall@5 | 0.8271 |
538
+ | cosine_recall@10 | 0.8729 |
539
+ | cosine_ndcg@10 | 0.7566 |
540
+ | cosine_mrr@10 | 0.7193 |
541
+ | **cosine_map@100** | **0.7237** |
542
+
543
+ <!--
544
+ ## Bias, Risks and Limitations
545
+
546
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
547
+ -->
548
+
549
+ <!--
550
+ ### Recommendations
551
+
552
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
553
+ -->
554
+
555
+ ## Training Details
556
+
557
+ ### Training Dataset
558
+
559
+ #### json
560
+
561
+ * Dataset: json
562
+ * Size: 6,300 training samples
563
+ * Columns: <code>positive</code> and <code>anchor</code>
564
+ * Approximate statistics based on the first 1000 samples:
565
+ | | positive | anchor |
566
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
567
+ | type | string | string |
568
+ | details | <ul><li>min: 8 tokens</li><li>mean: 45.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.61 tokens</li><li>max: 42 tokens</li></ul> |
569
+ * Samples:
570
+ | positive | anchor |
571
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
572
+ | <code>GM Financial's penetration of our retail sales in the U.S. was 42% in the year ended December 31, 2023, compared to 43% in the corresponding period in 2022.</code> | <code>How did the penetration rate of GM Financial's retail sales in the U.S. change from 2022 to 2023?</code> |
573
+ | <code>Net cash provided by operating activities decreased by $2.0 billion in fiscal 2022 compared to fiscal 2021.</code> | <code>How did the cash flow from operating activities change in fiscal 2022 compared to fiscal 2021?</code> |
574
+ | <code>Total revenues increased $8.2 billion, or 7.5%, in 2023 compared to 2022. The increase was primarily driven by pharmacy drug mix, increased prescription volume, brand inflation, and increased contributions from vaccinations.</code> | <code>How much did total revenues increase in 2023 compared to the previous year?</code> |
575
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
576
+ ```json
577
+ {
578
+ "loss": "MultipleNegativesRankingLoss",
579
+ "matryoshka_dims": [
580
+ 768,
581
+ 512,
582
+ 256,
583
+ 128,
584
+ 64
585
+ ],
586
+ "matryoshka_weights": [
587
+ 1,
588
+ 1,
589
+ 1,
590
+ 1,
591
+ 1
592
+ ],
593
+ "n_dims_per_step": -1
594
+ }
595
+ ```
596
+
597
+ ### Evaluation Dataset
598
+
599
+ #### json
600
+
601
+ * Dataset: json
602
+ * Size: 700 evaluation samples
603
+ * Columns: <code>positive</code> and <code>anchor</code>
604
+ * Approximate statistics based on the first 700 samples:
605
+ | | positive | anchor |
606
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
607
+ | type | string | string |
608
+ | details | <ul><li>min: 10 tokens</li><li>mean: 44.82 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.31 tokens</li><li>max: 51 tokens</li></ul> |
609
+ * Samples:
610
+ | positive | anchor |
611
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
612
+ | <code>Using these constant rates, total revenue and advertising revenue would have been $374 million and $379 million lower than actual total revenue and advertising revenue, respectively, for the full year 2023.</code> | <code>How much would total revenue and advertising revenue have been lower in 2023 using constant foreign exchange rates compared to actual figures?</code> |
613
+ | <code>Interest expense increased $42.9 million to $348.8 million for the year ended December 31, 2023, compared to $305.9 million during the year ended December 31, 2022.</code> | <code>What was the total interest expense for the year ended December 31, 2023?</code> |
614
+ | <code>Net cash provided by operating activities increased $183.3 million in 2022 compared to 2021 primarily as a result of higher current year earnings, net of non-cash items, and smaller decreases in liability balances, partially offset by higher inventory levels and a smaller increase in accounts payable.</code> | <code>How much did net cash provided by operating activities increase in 2022 compared to 2021?</code> |
615
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
616
+ ```json
617
+ {
618
+ "loss": "MultipleNegativesRankingLoss",
619
+ "matryoshka_dims": [
620
+ 768,
621
+ 512,
622
+ 256,
623
+ 128,
624
+ 64
625
+ ],
626
+ "matryoshka_weights": [
627
+ 1,
628
+ 1,
629
+ 1,
630
+ 1,
631
+ 1
632
+ ],
633
+ "n_dims_per_step": -1
634
+ }
635
+ ```
636
+
637
+ ### Training Hyperparameters
638
+ #### Non-Default Hyperparameters
639
+
640
+ - `eval_strategy`: epoch
641
+ - `per_device_train_batch_size`: 32
642
+ - `per_device_eval_batch_size`: 16
643
+ - `gradient_accumulation_steps`: 16
644
+ - `learning_rate`: 2e-05
645
+ - `num_train_epochs`: 4
646
+ - `lr_scheduler_type`: cosine
647
+ - `warmup_ratio`: 0.1
648
+ - `fp16`: True
649
+ - `tf32`: False
650
+ - `load_best_model_at_end`: True
651
+ - `optim`: adamw_torch_fused
652
+ - `batch_sampler`: no_duplicates
653
+
654
+ #### All Hyperparameters
655
+ <details><summary>Click to expand</summary>
656
+
657
+ - `overwrite_output_dir`: False
658
+ - `do_predict`: False
659
+ - `eval_strategy`: epoch
660
+ - `prediction_loss_only`: True
661
+ - `per_device_train_batch_size`: 32
662
+ - `per_device_eval_batch_size`: 16
663
+ - `per_gpu_train_batch_size`: None
664
+ - `per_gpu_eval_batch_size`: None
665
+ - `gradient_accumulation_steps`: 16
666
+ - `eval_accumulation_steps`: None
667
+ - `torch_empty_cache_steps`: None
668
+ - `learning_rate`: 2e-05
669
+ - `weight_decay`: 0.0
670
+ - `adam_beta1`: 0.9
671
+ - `adam_beta2`: 0.999
672
+ - `adam_epsilon`: 1e-08
673
+ - `max_grad_norm`: 1.0
674
+ - `num_train_epochs`: 4
675
+ - `max_steps`: -1
676
+ - `lr_scheduler_type`: cosine
677
+ - `lr_scheduler_kwargs`: {}
678
+ - `warmup_ratio`: 0.1
679
+ - `warmup_steps`: 0
680
+ - `log_level`: passive
681
+ - `log_level_replica`: warning
682
+ - `log_on_each_node`: True
683
+ - `logging_nan_inf_filter`: True
684
+ - `save_safetensors`: True
685
+ - `save_on_each_node`: False
686
+ - `save_only_model`: False
687
+ - `restore_callback_states_from_checkpoint`: False
688
+ - `no_cuda`: False
689
+ - `use_cpu`: False
690
+ - `use_mps_device`: False
691
+ - `seed`: 42
692
+ - `data_seed`: None
693
+ - `jit_mode_eval`: False
694
+ - `use_ipex`: False
695
+ - `bf16`: False
696
+ - `fp16`: True
697
+ - `fp16_opt_level`: O1
698
+ - `half_precision_backend`: auto
699
+ - `bf16_full_eval`: False
700
+ - `fp16_full_eval`: False
701
+ - `tf32`: False
702
+ - `local_rank`: 0
703
+ - `ddp_backend`: None
704
+ - `tpu_num_cores`: None
705
+ - `tpu_metrics_debug`: False
706
+ - `debug`: []
707
+ - `dataloader_drop_last`: False
708
+ - `dataloader_num_workers`: 0
709
+ - `dataloader_prefetch_factor`: None
710
+ - `past_index`: -1
711
+ - `disable_tqdm`: False
712
+ - `remove_unused_columns`: True
713
+ - `label_names`: None
714
+ - `load_best_model_at_end`: True
715
+ - `ignore_data_skip`: False
716
+ - `fsdp`: []
717
+ - `fsdp_min_num_params`: 0
718
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
719
+ - `fsdp_transformer_layer_cls_to_wrap`: None
720
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
721
+ - `deepspeed`: None
722
+ - `label_smoothing_factor`: 0.0
723
+ - `optim`: adamw_torch_fused
724
+ - `optim_args`: None
725
+ - `adafactor`: False
726
+ - `group_by_length`: False
727
+ - `length_column_name`: length
728
+ - `ddp_find_unused_parameters`: None
729
+ - `ddp_bucket_cap_mb`: None
730
+ - `ddp_broadcast_buffers`: False
731
+ - `dataloader_pin_memory`: True
732
+ - `dataloader_persistent_workers`: False
733
+ - `skip_memory_metrics`: True
734
+ - `use_legacy_prediction_loop`: False
735
+ - `push_to_hub`: False
736
+ - `resume_from_checkpoint`: None
737
+ - `hub_model_id`: None
738
+ - `hub_strategy`: every_save
739
+ - `hub_private_repo`: False
740
+ - `hub_always_push`: False
741
+ - `gradient_checkpointing`: False
742
+ - `gradient_checkpointing_kwargs`: None
743
+ - `include_inputs_for_metrics`: False
744
+ - `eval_do_concat_batches`: True
745
+ - `fp16_backend`: auto
746
+ - `push_to_hub_model_id`: None
747
+ - `push_to_hub_organization`: None
748
+ - `mp_parameters`:
749
+ - `auto_find_batch_size`: False
750
+ - `full_determinism`: False
751
+ - `torchdynamo`: None
752
+ - `ray_scope`: last
753
+ - `ddp_timeout`: 1800
754
+ - `torch_compile`: False
755
+ - `torch_compile_backend`: None
756
+ - `torch_compile_mode`: None
757
+ - `dispatch_batches`: None
758
+ - `split_batches`: None
759
+ - `include_tokens_per_second`: False
760
+ - `include_num_input_tokens_seen`: False
761
+ - `neftune_noise_alpha`: None
762
+ - `optim_target_modules`: None
763
+ - `batch_eval_metrics`: False
764
+ - `eval_on_start`: False
765
+ - `use_liger_kernel`: False
766
+ - `eval_use_gather_object`: False
767
+ - `batch_sampler`: no_duplicates
768
+ - `multi_dataset_batch_sampler`: proportional
769
+
770
+ </details>
771
+
772
+ ### Training Logs
773
+ | Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
774
+ |:----------:|:------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
775
+ | 0.8122 | 10 | 1.6144 | - | - | - | - | - | - |
776
+ | 0.9746 | 12 | - | 0.2439 | 0.7301 | 0.7428 | 0.7539 | 0.6957 | 0.7607 |
777
+ | 1.6244 | 20 | 0.6547 | - | - | - | - | - | - |
778
+ | 1.9492 | 24 | - | 0.1966 | 0.7496 | 0.7631 | 0.7729 | 0.7187 | 0.7733 |
779
+ | 2.4365 | 30 | 0.4734 | - | - | - | - | - | - |
780
+ | 2.9239 | 36 | - | 0.1822 | 0.7556 | 0.7643 | 0.7743 | 0.7242 | 0.7756 |
781
+ | 3.2487 | 40 | 0.3833 | - | - | - | - | - | - |
782
+ | **3.8985** | **48** | **-** | **0.1794** | **0.7564** | **0.7658** | **0.7743** | **0.7237** | **0.7779** |
783
+
784
+ * The bold row denotes the saved checkpoint.
785
+
786
+ ### Framework Versions
787
+ - Python: 3.8.10
788
+ - Sentence Transformers: 3.1.1
789
+ - Transformers: 4.45.2
790
+ - PyTorch: 2.1.2+cu121
791
+ - Accelerate: 1.0.1
792
+ - Datasets: 2.19.1
793
+ - Tokenizers: 0.20.3
794
+
795
+ ## Citation
796
+
797
+ ### BibTeX
798
+
799
+ #### Sentence Transformers
800
+ ```bibtex
801
+ @inproceedings{reimers-2019-sentence-bert,
802
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
803
+ author = "Reimers, Nils and Gurevych, Iryna",
804
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
805
+ month = "11",
806
+ year = "2019",
807
+ publisher = "Association for Computational Linguistics",
808
+ url = "https://arxiv.org/abs/1908.10084",
809
+ }
810
+ ```
811
+
812
+ #### MatryoshkaLoss
813
+ ```bibtex
814
+ @misc{kusupati2024matryoshka,
815
+ title={Matryoshka Representation Learning},
816
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
817
+ year={2024},
818
+ eprint={2205.13147},
819
+ archivePrefix={arXiv},
820
+ primaryClass={cs.LG}
821
+ }
822
+ ```
823
+
824
+ #### MultipleNegativesRankingLoss
825
+ ```bibtex
826
+ @misc{henderson2017efficient,
827
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
828
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
829
+ year={2017},
830
+ eprint={1705.00652},
831
+ archivePrefix={arXiv},
832
+ primaryClass={cs.CL}
833
+ }
834
+ ```
835
+
836
+ <!--
837
+ ## Glossary
838
+
839
+ *Clearly define terms in order to be accessible across audiences.*
840
+ -->
841
+
842
+ <!--
843
+ ## Model Card Authors
844
+
845
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
846
+ -->
847
+
848
+ <!--
849
+ ## Model Card Contact
850
+
851
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
852
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.45.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b37160db10bd48a4c27749b66ca20eb5ac9c21326d9360def8bbf3ee0e9193b
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff