BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Marketplace revenue increased $86.3 million to $2.0 billion in the year ended December 31, 2023 compared to the year ended December 31, 2022.',
'How much did Marketplace revenue increase in the year ended December 31, 2023?',
'Why did operations and support expenses decrease in 2023, and what factors offset this decrease?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8786 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1757 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8786 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.8071 |
cosine_mrr@10 | 0.7741 |
cosine_map@100 | 0.7779 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6943 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.6943 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.6943 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.8031 |
cosine_mrr@10 | 0.7702 |
cosine_map@100 | 0.7743 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.8243 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.2748 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.8243 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.797 |
cosine_mrr@10 | 0.7623 |
cosine_map@100 | 0.7658 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.68 |
cosine_accuracy@3 | 0.8086 |
cosine_accuracy@5 | 0.8514 |
cosine_accuracy@10 | 0.8843 |
cosine_precision@1 | 0.68 |
cosine_precision@3 | 0.2695 |
cosine_precision@5 | 0.1703 |
cosine_precision@10 | 0.0884 |
cosine_recall@1 | 0.68 |
cosine_recall@3 | 0.8086 |
cosine_recall@5 | 0.8514 |
cosine_recall@10 | 0.8843 |
cosine_ndcg@10 | 0.784 |
cosine_mrr@10 | 0.7516 |
cosine_map@100 | 0.7564 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6371 |
cosine_accuracy@3 | 0.7814 |
cosine_accuracy@5 | 0.8271 |
cosine_accuracy@10 | 0.8729 |
cosine_precision@1 | 0.6371 |
cosine_precision@3 | 0.2605 |
cosine_precision@5 | 0.1654 |
cosine_precision@10 | 0.0873 |
cosine_recall@1 | 0.6371 |
cosine_recall@3 | 0.7814 |
cosine_recall@5 | 0.8271 |
cosine_recall@10 | 0.8729 |
cosine_ndcg@10 | 0.7566 |
cosine_mrr@10 | 0.7193 |
cosine_map@100 | 0.7237 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 45.56 tokens
- max: 512 tokens
- min: 2 tokens
- mean: 20.61 tokens
- max: 42 tokens
- Samples:
positive anchor GM Financial's penetration of our retail sales in the U.S. was 42% in the year ended December 31, 2023, compared to 43% in the corresponding period in 2022.
How did the penetration rate of GM Financial's retail sales in the U.S. change from 2022 to 2023?
Net cash provided by operating activities decreased by $2.0 billion in fiscal 2022 compared to fiscal 2021.
How did the cash flow from operating activities change in fiscal 2022 compared to fiscal 2021?
Total revenues increased $8.2 billion, or 7.5%, in 2023 compared to 2022. The increase was primarily driven by pharmacy drug mix, increased prescription volume, brand inflation, and increased contributions from vaccinations.
How much did total revenues increase in 2023 compared to the previous year?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
json
- Dataset: json
- Size: 700 evaluation samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 700 samples:
positive anchor type string string details - min: 10 tokens
- mean: 44.82 tokens
- max: 439 tokens
- min: 10 tokens
- mean: 20.31 tokens
- max: 51 tokens
- Samples:
positive anchor Using these constant rates, total revenue and advertising revenue would have been $374 million and $379 million lower than actual total revenue and advertising revenue, respectively, for the full year 2023.
How much would total revenue and advertising revenue have been lower in 2023 using constant foreign exchange rates compared to actual figures?
Interest expense increased $42.9 million to $348.8 million for the year ended December 31, 2023, compared to $305.9 million during the year ended December 31, 2022.
What was the total interest expense for the year ended December 31, 2023?
Net cash provided by operating activities increased $183.3 million in 2022 compared to 2021 primarily as a result of higher current year earnings, net of non-cash items, and smaller decreases in liability balances, partially offset by higher inventory levels and a smaller increase in accounts payable.
How much did net cash provided by operating activities increase in 2022 compared to 2021?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6144 | - | - | - | - | - | - |
0.9746 | 12 | - | 0.2439 | 0.7301 | 0.7428 | 0.7539 | 0.6957 | 0.7607 |
1.6244 | 20 | 0.6547 | - | - | - | - | - | - |
1.9492 | 24 | - | 0.1966 | 0.7496 | 0.7631 | 0.7729 | 0.7187 | 0.7733 |
2.4365 | 30 | 0.4734 | - | - | - | - | - | - |
2.9239 | 36 | - | 0.1822 | 0.7556 | 0.7643 | 0.7743 | 0.7242 | 0.7756 |
3.2487 | 40 | 0.3833 | - | - | - | - | - | - |
3.8985 | 48 | - | 0.1794 | 0.7564 | 0.7658 | 0.7743 | 0.7237 | 0.7779 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for viggypoker1/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.700
- Cosine Accuracy@3 on dim 768self-reported0.829
- Cosine Accuracy@5 on dim 768self-reported0.879
- Cosine Accuracy@10 on dim 768self-reported0.909
- Cosine Precision@1 on dim 768self-reported0.700
- Cosine Precision@3 on dim 768self-reported0.276
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.700
- Cosine Recall@3 on dim 768self-reported0.829