metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:311351
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
What specialized services does Equifax's Workforce Solutions segment
offer?
sentences:
- >-
Supermarkets are generally operated under one of the following formats:
combination food and drug stores ('combo stores'); multi-department
stores; marketplace stores; or price impact warehouses.
- >-
Workforce Solutions — provides services enabling customers to verify
income, employment, educational history, criminal justice data,
healthcare professional licensure and sanctions of people in the U.S.
(Verification Services), as well as providing our employer customers
with services which include unemployment claims management, I-9 and
onboarding services, Affordable Care Act compliance management, tax
credits and incentives and other complementary employment-based
transaction services (Employer Services)
- >-
International Business Machines Corporation (IBM or the company) was
incorporated in the State of New York on June 16, 1911, as the
Computing-Tabulating-Recording Co. (C-T-R).
- source_sentence: >-
What factors contributed to the increase in operating income for the
Company in 2023?
sentences:
- >-
Operating income increased $5.8 billion, or 72.8%, in 2023 compared to
2022. The increase in operating income was primarily driven by the
absence of $5.8 billion of opioid litigation charges recorded in 2022
and increases in the Pharmacy & Consumer Wellness segment, primarily
driven by the absence of a $2.5 billion loss on assets held for sale
recorded in 2022 related to the write-down of the Company’s Omnicare®
long-term care business which was partially offset by continued pharmacy
reimbursement pressure and decreased COVID-19 vaccinations and
diagnostic testing compared to 2022, as well as an increase in the
Health Services segment.
- >-
Pennsylvania law requires that the Office of Attorney General be
provided advance notice of any transaction that would result in Hershey
Trust Company, as trustee for the Trust, no longer having voting control
of the Company.
- >-
In 2023, UnitedHealthcare invested $3,386 million in property,
equipment, and capitalized software.
- source_sentence: >-
What event took place in September 2021 involving the Company and the
counsel representing plaintiffs?
sentences:
- >-
Item 8, which requires the inclusion of financial statements and
supplementary data, directs readers to Item 15(a) for this information.
- >-
In September 2021, the Company entered into a settlement in principle
with the counsel representing plaintiffs in this matter and in
substantially all of the outstanding cases in the United States. The
costs associated with this and other settlements are reflected in the
Company’s accruals.
- >-
GM empowers employees to 'Speak Up for Safety' through the Employee
Safety Concern Process which makes it easier for employees to report
potential safety issues or suggest improvements without fear of
retaliation and ensures their safety every day.
- source_sentence: >-
What was the total cash consideration for Comcast's acquisition of Masergy
in October 2021?
sentences:
- >-
In October 2021, Comcast acquired Masergy, a provider of
software-defined networking and cloud platforms for global enterprises,
for a total cash consideration of $1.2 billion.
- >-
The net unit growth for Hilton in the year ended December 31, 2023, was
4.9 percent.
- >-
Financial Statements and Supplementary Data are addressed in Item 8 of
the financial document.
- source_sentence: >-
What does the term 'Acquired brands' refer to and how does it affect the
reported volumes?
sentences:
- >-
Phrases such as 'anticipates', 'believes', 'estimates', 'seeks',
'expects', 'plans', 'intends', 'remains', 'positions', and similar
expressions are intended to identify forward-looking statements related
to the company or management.
- >-
'Acquired brands' refers to brands acquired during the past 12 months.
Typically, the Company has not reported unit case volume or recognized
concentrate sales volume related to acquired brands in periods prior to
the closing of a transaction. Therefore, the unit case volume and
concentrate sales volume related to an acquired brand are incremental to
prior year volume.
- >-
The Company made matching contributions to employee accounts in
connection with the 401(k) plan of $37.3 million in fiscal 2023, $37.9
million in fiscal 2022 and $34.1 million in fiscal 2021.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Vignesh finetuned bge2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8129831819187487
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7784263038548753
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7817486756411115
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1771428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.84
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.812081821657879
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7757766439909298
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7786577115899984
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8040804108630832
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.768536281179138
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7719825285723502
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7904898848742749
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7528854875283444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7566672358984098
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6314285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7942857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6314285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26476190476190475
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16771428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6314285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7942857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7591380417514834
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7191768707482988
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7235543749437979
name: Cosine Map@100
Vignesh finetuned bge2
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("viggypoker1/Vignesh-finetuned-bge2")
sentences = [
"What does the term 'Acquired brands' refer to and how does it affect the reported volumes?",
"'Acquired brands' refers to brands acquired during the past 12 months. Typically, the Company has not reported unit case volume or recognized concentrate sales volume related to acquired brands in periods prior to the closing of a transaction. Therefore, the unit case volume and concentrate sales volume related to an acquired brand are incremental to prior year volume.",
'The Company made matching contributions to employee accounts in connection with the 401(k) plan of $37.3 million in fiscal 2023, $37.9 million in fiscal 2022 and $34.1 million in fiscal 2021.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8414 |
cosine_accuracy@5 |
0.8786 |
cosine_accuracy@10 |
0.92 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2805 |
cosine_precision@5 |
0.1757 |
cosine_precision@10 |
0.092 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8414 |
cosine_recall@5 |
0.8786 |
cosine_recall@10 |
0.92 |
cosine_ndcg@10 |
0.813 |
cosine_mrr@10 |
0.7784 |
cosine_map@100 |
0.7817 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.84 |
cosine_accuracy@5 |
0.8857 |
cosine_accuracy@10 |
0.9243 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.28 |
cosine_precision@5 |
0.1771 |
cosine_precision@10 |
0.0924 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.84 |
cosine_recall@5 |
0.8857 |
cosine_recall@10 |
0.9243 |
cosine_ndcg@10 |
0.8121 |
cosine_mrr@10 |
0.7758 |
cosine_map@100 |
0.7787 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.69 |
cosine_accuracy@3 |
0.8286 |
cosine_accuracy@5 |
0.8729 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.69 |
cosine_precision@3 |
0.2762 |
cosine_precision@5 |
0.1746 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.69 |
cosine_recall@3 |
0.8286 |
cosine_recall@5 |
0.8729 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8041 |
cosine_mrr@10 |
0.7685 |
cosine_map@100 |
0.772 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.67 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.67 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.67 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.7905 |
cosine_mrr@10 |
0.7529 |
cosine_map@100 |
0.7567 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6314 |
cosine_accuracy@3 |
0.7943 |
cosine_accuracy@5 |
0.8386 |
cosine_accuracy@10 |
0.8829 |
cosine_precision@1 |
0.6314 |
cosine_precision@3 |
0.2648 |
cosine_precision@5 |
0.1677 |
cosine_precision@10 |
0.0883 |
cosine_recall@1 |
0.6314 |
cosine_recall@3 |
0.7943 |
cosine_recall@5 |
0.8386 |
cosine_recall@10 |
0.8829 |
cosine_ndcg@10 |
0.7591 |
cosine_mrr@10 |
0.7192 |
cosine_map@100 |
0.7236 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 311,351 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 9 tokens
- mean: 20.47 tokens
- max: 41 tokens
|
- min: 7 tokens
- mean: 46.65 tokens
- max: 512 tokens
|
- Samples:
anchor |
positive |
What section from item 8 addresses financial information? |
Item 8 covers 'Financial Statements and Supplementary Data' relating to financial information. |
What was the percentage increase in interest income from 2022 to 2023? |
Interest income increased $769 million, or 259%, in the year ended December 31, 2023 as compared to the year ended December 31, 2022. This increase was primarily due to higher interest earned on our cash and cash equivalents and short-term investments in the year ended December 31, 2023 as compared to the prior year due to rising interest rates and our increasing portfolio balance. |
What was the operating margin for UnitedHealthcare in 2023? |
The operating margin for UnitedHealthcare in 2023 was reported as 5.8%. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
json
- Dataset: json
- Size: 700 evaluation samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 700 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 7 tokens
- mean: 20.59 tokens
- max: 40 tokens
|
- min: 6 tokens
- mean: 47.59 tokens
- max: 326 tokens
|
- Samples:
anchor |
positive |
What was the maximum borrowing capacity available from the Federal Home Loan Bank of Boston as of December 31, 2023? |
The maximum borrowing capacity available from the FHLBB as of December 31, 2023 was approximately $1.0 billion. |
What new compliance requirement was established by the CFPB's final rule issued on March 30, 2023, regarding small business credit applications? |
On March 30, 2023, the CFPB adopted a final rule requiring covered financial institutions, such as us, to collect and report data to the CFPB regarding certain small business credit applications. |
What potential impact could continued geopolitical tensions have on the business? |
While the ongoing Russia-Ukraine and Israel conflicts are still evolving and outcomes remain uncertain, the business does not expect the resulting challenging macroeconomic conditions to have a material impact currently. However, if conflicts continue or worsen, it could lead to greater disruptions and uncertainty, negatively impacting the business. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0658 |
10 |
12.7958 |
- |
- |
- |
- |
- |
- |
0.1315 |
20 |
16.8225 |
- |
- |
- |
- |
- |
- |
0.1973 |
30 |
20.1236 |
- |
- |
- |
- |
- |
- |
0.2630 |
40 |
22.0845 |
- |
- |
- |
- |
- |
- |
0.3288 |
50 |
19.7865 |
- |
- |
- |
- |
- |
- |
0.3946 |
60 |
6.0102 |
- |
- |
- |
- |
- |
- |
0.4603 |
70 |
3.7813 |
- |
- |
- |
- |
- |
- |
0.5261 |
80 |
2.8675 |
- |
- |
- |
- |
- |
- |
0.5919 |
90 |
2.2002 |
- |
- |
- |
- |
- |
- |
0.6576 |
100 |
1.8334 |
- |
- |
- |
- |
- |
- |
0.7234 |
110 |
1.5052 |
- |
- |
- |
- |
- |
- |
0.7891 |
120 |
1.3454 |
- |
- |
- |
- |
- |
- |
0.8549 |
130 |
1.2089 |
- |
- |
- |
- |
- |
- |
0.9207 |
140 |
1.0615 |
- |
- |
- |
- |
- |
- |
0.9864 |
150 |
1.011 |
- |
- |
- |
- |
- |
- |
0.9996 |
152 |
- |
0.2963 |
0.7043 |
0.7228 |
0.7462 |
0.6496 |
0.7566 |
1.0522 |
160 |
7.9844 |
- |
- |
- |
- |
- |
- |
1.1180 |
170 |
12.726 |
- |
- |
- |
- |
- |
- |
1.1837 |
180 |
17.3762 |
- |
- |
- |
- |
- |
- |
1.2495 |
190 |
19.358 |
- |
- |
- |
- |
- |
- |
1.3152 |
200 |
19.4805 |
- |
- |
- |
- |
- |
- |
1.3810 |
210 |
5.7452 |
- |
- |
- |
- |
- |
- |
1.4468 |
220 |
1.3857 |
- |
- |
- |
- |
- |
- |
1.5125 |
230 |
0.9792 |
- |
- |
- |
- |
- |
- |
1.5783 |
240 |
0.8632 |
- |
- |
- |
- |
- |
- |
1.6441 |
250 |
0.8256 |
- |
- |
- |
- |
- |
- |
1.7098 |
260 |
0.742 |
- |
- |
- |
- |
- |
- |
1.7756 |
270 |
0.7307 |
- |
- |
- |
- |
- |
- |
1.8413 |
280 |
0.7064 |
- |
- |
- |
- |
- |
- |
1.9071 |
290 |
0.6492 |
- |
- |
- |
- |
- |
- |
1.9729 |
300 |
0.6265 |
- |
- |
- |
- |
- |
- |
1.9992 |
304 |
- |
0.2345 |
0.7145 |
0.7317 |
0.7548 |
0.6706 |
0.7609 |
2.0386 |
310 |
4.0854 |
- |
- |
- |
- |
- |
- |
2.1044 |
320 |
11.4485 |
- |
- |
- |
- |
- |
- |
2.1702 |
330 |
14.1851 |
- |
- |
- |
- |
- |
- |
2.2359 |
340 |
17.7422 |
- |
- |
- |
- |
- |
- |
2.3017 |
350 |
19.2742 |
- |
- |
- |
- |
- |
- |
2.3674 |
360 |
7.3918 |
- |
- |
- |
- |
- |
- |
2.4332 |
370 |
1.0444 |
- |
- |
- |
- |
- |
- |
2.4990 |
380 |
0.6947 |
- |
- |
- |
- |
- |
- |
2.5647 |
390 |
0.6 |
- |
- |
- |
- |
- |
- |
2.6305 |
400 |
0.6005 |
- |
- |
- |
- |
- |
- |
2.6963 |
410 |
0.5314 |
- |
- |
- |
- |
- |
- |
2.7620 |
420 |
0.5238 |
- |
- |
- |
- |
- |
- |
2.8278 |
430 |
0.5207 |
- |
- |
- |
- |
- |
- |
2.8935 |
440 |
0.5075 |
- |
- |
- |
- |
- |
- |
2.9593 |
450 |
0.4673 |
- |
- |
- |
- |
- |
- |
2.9988 |
456 |
- |
0.2111 |
0.7252 |
0.7333 |
0.7530 |
0.6821 |
0.7617 |
3.0251 |
460 |
1.5162 |
- |
- |
- |
- |
- |
- |
3.0908 |
470 |
10.5824 |
- |
- |
- |
- |
- |
- |
3.1566 |
480 |
11.8184 |
- |
- |
- |
- |
- |
- |
3.2224 |
490 |
16.3944 |
- |
- |
- |
- |
- |
- |
3.2881 |
500 |
18.1591 |
- |
- |
- |
- |
- |
- |
3.3539 |
510 |
10.8653 |
- |
- |
- |
- |
- |
- |
3.4196 |
520 |
0.8936 |
- |
- |
- |
- |
- |
- |
3.4854 |
530 |
0.5606 |
- |
- |
- |
- |
- |
- |
3.5512 |
540 |
0.4724 |
- |
- |
- |
- |
- |
- |
3.6169 |
550 |
0.4681 |
- |
- |
- |
- |
- |
- |
3.6827 |
560 |
0.4334 |
- |
- |
- |
- |
- |
- |
3.7485 |
570 |
0.4005 |
- |
- |
- |
- |
- |
- |
3.8142 |
580 |
0.4224 |
- |
- |
- |
- |
- |
- |
3.8800 |
590 |
0.4296 |
- |
- |
- |
- |
- |
- |
3.9457 |
600 |
0.3788 |
- |
- |
- |
- |
- |
- |
3.9984 |
608 |
- |
0.1889 |
0.7345 |
0.7469 |
0.7647 |
0.6906 |
0.7633 |
4.0115 |
610 |
0.5548 |
- |
- |
- |
- |
- |
- |
4.0773 |
620 |
8.6803 |
- |
- |
- |
- |
- |
- |
4.1430 |
630 |
10.6235 |
- |
- |
- |
- |
- |
- |
4.2088 |
640 |
14.5689 |
- |
- |
- |
- |
- |
- |
4.2746 |
650 |
17.649 |
- |
- |
- |
- |
- |
- |
4.3403 |
660 |
13.9682 |
- |
- |
- |
- |
- |
- |
4.4061 |
670 |
0.7801 |
- |
- |
- |
- |
- |
- |
4.4718 |
680 |
0.4848 |
- |
- |
- |
- |
- |
- |
4.5376 |
690 |
0.4082 |
- |
- |
- |
- |
- |
- |
4.6034 |
700 |
0.3883 |
- |
- |
- |
- |
- |
- |
4.6691 |
710 |
0.3737 |
- |
- |
- |
- |
- |
- |
4.7349 |
720 |
0.3485 |
- |
- |
- |
- |
- |
- |
4.8007 |
730 |
0.3547 |
- |
- |
- |
- |
- |
- |
4.8664 |
740 |
0.357 |
- |
- |
- |
- |
- |
- |
4.9322 |
750 |
0.3223 |
- |
- |
- |
- |
- |
- |
4.9979 |
760 |
0.3322 |
0.1843 |
0.7364 |
0.7482 |
0.7645 |
0.6911 |
0.7652 |
5.0637 |
770 |
6.5343 |
- |
- |
- |
- |
- |
- |
5.1295 |
780 |
10.1093 |
- |
- |
- |
- |
- |
- |
5.1952 |
790 |
13.3253 |
- |
- |
- |
- |
- |
- |
5.2610 |
800 |
16.6724 |
- |
- |
- |
- |
- |
- |
5.3268 |
810 |
15.6655 |
- |
- |
- |
- |
- |
- |
5.3925 |
820 |
2.0319 |
- |
- |
- |
- |
- |
- |
5.4583 |
830 |
0.4315 |
- |
- |
- |
- |
- |
- |
5.5240 |
840 |
0.3544 |
- |
- |
- |
- |
- |
- |
5.5898 |
850 |
0.3488 |
- |
- |
- |
- |
- |
- |
5.6556 |
860 |
0.3301 |
- |
- |
- |
- |
- |
- |
5.7213 |
870 |
0.3035 |
- |
- |
- |
- |
- |
- |
5.7871 |
880 |
0.3123 |
- |
- |
- |
- |
- |
- |
5.8529 |
890 |
0.3149 |
- |
- |
- |
- |
- |
- |
5.9186 |
900 |
0.2857 |
- |
- |
- |
- |
- |
- |
5.9844 |
910 |
0.3021 |
- |
- |
- |
- |
- |
- |
5.9975 |
912 |
- |
0.1704 |
0.7442 |
0.7527 |
0.7643 |
0.7031 |
0.7700 |
6.0501 |
920 |
4.5418 |
- |
- |
- |
- |
- |
- |
6.1159 |
930 |
8.909 |
- |
- |
- |
- |
- |
- |
6.1817 |
940 |
12.7023 |
- |
- |
- |
- |
- |
- |
6.2474 |
950 |
15.6328 |
- |
- |
- |
- |
- |
- |
6.3132 |
960 |
17.1026 |
- |
- |
- |
- |
- |
- |
6.3790 |
970 |
3.8174 |
- |
- |
- |
- |
- |
- |
6.4447 |
980 |
0.4035 |
- |
- |
- |
- |
- |
- |
6.5105 |
990 |
0.3281 |
- |
- |
- |
- |
- |
- |
6.5762 |
1000 |
0.3126 |
- |
- |
- |
- |
- |
- |
6.6420 |
1010 |
0.304 |
- |
- |
- |
- |
- |
- |
6.7078 |
1020 |
0.2692 |
- |
- |
- |
- |
- |
- |
6.7735 |
1030 |
0.2807 |
- |
- |
- |
- |
- |
- |
6.8393 |
1040 |
0.2993 |
- |
- |
- |
- |
- |
- |
6.9051 |
1050 |
0.2721 |
- |
- |
- |
- |
- |
- |
6.9708 |
1060 |
0.2674 |
- |
- |
- |
- |
- |
- |
6.9971 |
1064 |
- |
0.1596 |
0.7481 |
0.7607 |
0.7723 |
0.7074 |
0.7735 |
7.0366 |
1070 |
2.5499 |
- |
- |
- |
- |
- |
- |
7.1023 |
1080 |
8.8274 |
- |
- |
- |
- |
- |
- |
7.1681 |
1090 |
11.3224 |
- |
- |
- |
- |
- |
- |
7.2339 |
1100 |
15.0825 |
- |
- |
- |
- |
- |
- |
7.2996 |
1110 |
17.6647 |
- |
- |
- |
- |
- |
- |
7.3654 |
1120 |
6.0271 |
- |
- |
- |
- |
- |
- |
7.4312 |
1130 |
0.3838 |
- |
- |
- |
- |
- |
- |
7.4969 |
1140 |
0.3137 |
- |
- |
- |
- |
- |
- |
7.5627 |
1150 |
0.285 |
- |
- |
- |
- |
- |
- |
7.6284 |
1160 |
0.2913 |
- |
- |
- |
- |
- |
- |
7.6942 |
1170 |
0.268 |
- |
- |
- |
- |
- |
- |
7.7600 |
1180 |
0.2643 |
- |
- |
- |
- |
- |
- |
7.8257 |
1190 |
0.2702 |
- |
- |
- |
- |
- |
- |
7.8915 |
1200 |
0.2775 |
- |
- |
- |
- |
- |
- |
7.9573 |
1210 |
0.2563 |
- |
- |
- |
- |
- |
- |
7.9967 |
1216 |
- |
0.1543 |
0.7495 |
0.7645 |
0.7715 |
0.7124 |
0.7802 |
8.0230 |
1220 |
0.7657 |
- |
- |
- |
- |
- |
- |
8.0888 |
1230 |
8.542 |
- |
- |
- |
- |
- |
- |
8.1545 |
1240 |
9.9807 |
- |
- |
- |
- |
- |
- |
8.2203 |
1250 |
14.3646 |
- |
- |
- |
- |
- |
- |
8.2861 |
1260 |
16.877 |
- |
- |
- |
- |
- |
- |
8.3518 |
1270 |
10.2992 |
- |
- |
- |
- |
- |
- |
8.4176 |
1280 |
0.363 |
- |
- |
- |
- |
- |
- |
8.4834 |
1290 |
0.304 |
- |
- |
- |
- |
- |
- |
8.5491 |
1300 |
0.2851 |
- |
- |
- |
- |
- |
- |
8.6149 |
1310 |
0.2853 |
- |
- |
- |
- |
- |
- |
8.6806 |
1320 |
0.2676 |
- |
- |
- |
- |
- |
- |
8.7464 |
1330 |
0.2522 |
- |
- |
- |
- |
- |
- |
8.8122 |
1340 |
0.2619 |
- |
- |
- |
- |
- |
- |
8.8779 |
1350 |
0.2757 |
- |
- |
- |
- |
- |
- |
8.9437 |
1360 |
0.2528 |
- |
- |
- |
- |
- |
- |
8.9963 |
1368 |
- |
0.1483 |
0.7529 |
0.7680 |
0.7759 |
0.7172 |
0.7807 |
9.0095 |
1370 |
0.3564 |
- |
- |
- |
- |
- |
- |
9.0752 |
1380 |
7.1402 |
- |
- |
- |
- |
- |
- |
9.1410 |
1390 |
9.4364 |
- |
- |
- |
- |
- |
- |
9.2067 |
1400 |
13.1391 |
- |
- |
- |
- |
- |
- |
9.2725 |
1410 |
16.7827 |
- |
- |
- |
- |
- |
- |
9.3383 |
1420 |
13.456 |
- |
- |
- |
- |
- |
- |
9.4040 |
1430 |
0.5238 |
- |
- |
- |
- |
- |
- |
9.4698 |
1440 |
0.3073 |
- |
- |
- |
- |
- |
- |
9.5356 |
1450 |
0.2773 |
- |
- |
- |
- |
- |
- |
9.6013 |
1460 |
0.2783 |
- |
- |
- |
- |
- |
- |
9.6671 |
1470 |
0.2645 |
- |
- |
- |
- |
- |
- |
9.7328 |
1480 |
0.2495 |
- |
- |
- |
- |
- |
- |
9.7986 |
1490 |
0.2649 |
- |
- |
- |
- |
- |
- |
9.8644 |
1500 |
0.2655 |
- |
- |
- |
- |
- |
- |
9.9301 |
1510 |
0.2395 |
- |
- |
- |
- |
- |
- |
9.9959 |
1520 |
0.2569 |
0.1453 |
0.7567 |
0.772 |
0.7787 |
0.7236 |
0.7817 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}