test-merge
test-merge is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: prometheus-eval/prometheus-7b-v2.0
parameters:
weight: 1.0
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 1.0
merge_method: linear
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "vicgalle/test-merge"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.99 |
AI2 Reasoning Challenge (25-Shot) | 60.58 |
HellaSwag (10-Shot) | 82.29 |
MMLU (5-Shot) | 59.38 |
TruthfulQA (0-shot) | 56.25 |
Winogrande (5-shot) | 76.40 |
GSM8k (5-shot) | 49.05 |
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vicgalle/test-merge
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard60.580
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard82.290
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard59.380
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard56.250
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard76.400
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard49.050