|
--- |
|
license: other |
|
base_model: nvidia/mit-b5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: segcrack9k_conglomerate_segformer |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segcrack9k_conglomerate_segformer |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0333 |
|
- Mean Iou: 0.3608 |
|
- Mean Accuracy: 0.7217 |
|
- Overall Accuracy: 0.7217 |
|
- Accuracy Background: nan |
|
- Accuracy Crack: 0.7217 |
|
- Iou Background: 0.0 |
|
- Iou Crack: 0.7217 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| |
|
| 0.0259 | 0.14 | 1000 | 0.0404 | 0.3267 | 0.6534 | 0.6534 | nan | 0.6534 | 0.0 | 0.6534 | |
|
| 0.0186 | 0.27 | 2000 | 0.0378 | 0.3586 | 0.7172 | 0.7172 | nan | 0.7172 | 0.0 | 0.7172 | |
|
| 0.0348 | 0.41 | 3000 | 0.0375 | 0.3209 | 0.6418 | 0.6418 | nan | 0.6418 | 0.0 | 0.6418 | |
|
| 0.011 | 0.54 | 4000 | 0.0356 | 0.3496 | 0.6991 | 0.6991 | nan | 0.6991 | 0.0 | 0.6991 | |
|
| 0.0132 | 0.68 | 5000 | 0.0350 | 0.3459 | 0.6918 | 0.6918 | nan | 0.6918 | 0.0 | 0.6918 | |
|
| 0.0573 | 0.81 | 6000 | 0.0339 | 0.3575 | 0.7149 | 0.7149 | nan | 0.7149 | 0.0 | 0.7149 | |
|
| 0.1466 | 0.95 | 7000 | 0.0333 | 0.3608 | 0.7217 | 0.7217 | nan | 0.7217 | 0.0 | 0.7217 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|