Hubert_noisy_common_voice_phonemes_debug
This model is a fine-tuned version of rinna/japanese-hubert-base on the ORIGINAL_NOISY_COMMON_VOICE - JA dataset. It achieves the following results on the evaluation set:
- Loss: 0.9125
- Wer: 1.0222
- Cer: 0.3103
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
No log | 0.2660 | 100 | 12.2968 | 1.0717 | 1.0679 |
No log | 0.5319 | 200 | 5.9423 | 1.0 | 0.9813 |
No log | 0.7979 | 300 | 5.4201 | 1.0 | 0.9813 |
No log | 1.0638 | 400 | 4.9840 | 1.0 | 0.9813 |
6.4953 | 1.3298 | 500 | 4.4992 | 1.0 | 0.9813 |
6.4953 | 1.5957 | 600 | 4.0212 | 1.0 | 0.9813 |
6.4953 | 1.8617 | 700 | 3.5973 | 1.0 | 0.9813 |
6.4953 | 2.1277 | 800 | 3.2996 | 1.0 | 0.9813 |
6.4953 | 2.3936 | 900 | 3.1686 | 1.0 | 0.9813 |
3.442 | 2.6596 | 1000 | 3.0725 | 1.0 | 0.9813 |
3.442 | 2.9255 | 1100 | 2.9187 | 1.0 | 0.9813 |
3.442 | 3.1915 | 1200 | 2.6014 | 1.0 | 0.8917 |
3.442 | 3.4574 | 1300 | 2.1700 | 1.0 | 0.6548 |
3.442 | 3.7234 | 1400 | 1.7176 | 1.0 | 0.4492 |
2.3862 | 3.9894 | 1500 | 1.5003 | 1.0 | 0.4197 |
2.3862 | 4.2553 | 1600 | 1.3507 | 1.0 | 0.4027 |
2.3862 | 4.5213 | 1700 | 1.2036 | 1.0 | 0.3701 |
2.3862 | 4.7872 | 1800 | 1.0972 | 1.0 | 0.3432 |
2.3862 | 5.0532 | 1900 | 0.9528 | 1.0 | 0.3108 |
1.2375 | 5.3191 | 2000 | 0.8881 | 1.0 | 0.2965 |
1.2375 | 5.5851 | 2100 | 0.8716 | 1.0 | 0.3024 |
1.2375 | 5.8511 | 2200 | 0.8150 | 1.0 | 0.2904 |
1.2375 | 6.1170 | 2300 | 0.7949 | 1.0 | 0.2875 |
1.2375 | 6.3830 | 2400 | 0.7734 | 1.0 | 0.2879 |
0.8538 | 6.6489 | 2500 | 0.7513 | 1.0 | 0.2839 |
0.8538 | 6.9149 | 2600 | 0.7448 | 1.0 | 0.2822 |
0.8538 | 7.1809 | 2700 | 0.7400 | 1.0 | 0.2804 |
0.8538 | 7.4468 | 2800 | 0.7283 | 1.0 | 0.2786 |
0.8538 | 7.7128 | 2900 | 0.7322 | 1.0 | 0.2809 |
0.7165 | 7.9787 | 3000 | 0.7111 | 1.0 | 0.2784 |
0.7165 | 8.2447 | 3100 | 0.7282 | 1.0 | 0.2858 |
0.7165 | 8.5106 | 3200 | 0.6960 | 1.0 | 0.2750 |
0.7165 | 8.7766 | 3300 | 0.7104 | 1.0 | 0.2811 |
0.7165 | 9.0426 | 3400 | 0.7289 | 1.0006 | 0.2790 |
0.6393 | 9.3085 | 3500 | 0.7068 | 1.0 | 0.2787 |
0.6393 | 9.5745 | 3600 | 0.7173 | 0.9999 | 0.2768 |
0.6393 | 9.8404 | 3700 | 0.6848 | 0.9963 | 0.2711 |
0.6393 | 10.1064 | 3800 | 0.7057 | 0.9954 | 0.2792 |
0.6393 | 10.3723 | 3900 | 0.7190 | 0.9975 | 0.2792 |
0.5993 | 10.6383 | 4000 | 0.7214 | 0.9946 | 0.2779 |
0.5993 | 10.9043 | 4100 | 0.7275 | 0.9931 | 0.2832 |
0.5993 | 11.1702 | 4200 | 0.6970 | 0.9902 | 0.2744 |
0.5993 | 11.4362 | 4300 | 0.7212 | 0.9946 | 0.2723 |
0.5993 | 11.7021 | 4400 | 0.7260 | 0.9915 | 0.2751 |
0.5646 | 11.9681 | 4500 | 0.7185 | 1.0111 | 0.2737 |
0.5646 | 12.2340 | 4600 | 0.7415 | 0.9968 | 0.2833 |
0.5646 | 12.5 | 4700 | 0.7404 | 0.9908 | 0.2779 |
0.5646 | 12.7660 | 4800 | 0.7145 | 0.9885 | 0.2727 |
0.5646 | 13.0319 | 4900 | 0.7319 | 1.0011 | 0.2719 |
0.5215 | 13.2979 | 5000 | 0.7503 | 0.9994 | 0.2726 |
0.5215 | 13.5638 | 5100 | 0.7200 | 1.0067 | 0.2710 |
0.5215 | 13.8298 | 5200 | 0.7043 | 0.9895 | 0.2746 |
0.5215 | 14.0957 | 5300 | 0.7587 | 1.0130 | 0.2760 |
0.5215 | 14.3617 | 5400 | 0.7453 | 0.9886 | 0.2792 |
0.4978 | 14.6277 | 5500 | 0.7269 | 1.0015 | 0.2754 |
0.4978 | 14.8936 | 5600 | 0.7381 | 0.9986 | 0.2728 |
0.4978 | 15.1596 | 5700 | 0.7658 | 1.0445 | 0.2747 |
0.4978 | 15.4255 | 5800 | 0.7593 | 1.0165 | 0.2758 |
0.4978 | 15.6915 | 5900 | 0.7959 | 1.0401 | 0.2799 |
0.4807 | 15.9574 | 6000 | 0.7533 | 1.0161 | 0.2784 |
0.4807 | 16.2234 | 6100 | 0.7566 | 0.9879 | 0.2775 |
0.4807 | 16.4894 | 6200 | 0.7418 | 0.9918 | 0.2784 |
0.4807 | 16.7553 | 6300 | 0.7968 | 0.9957 | 0.2811 |
0.4807 | 17.0213 | 6400 | 0.7728 | 1.0132 | 0.2754 |
0.4456 | 17.2872 | 6500 | 0.8130 | 1.0176 | 0.2794 |
0.4456 | 17.5532 | 6600 | 0.8082 | 1.0552 | 0.2850 |
0.4456 | 17.8191 | 6700 | 0.8325 | 1.0939 | 0.2797 |
0.4456 | 18.0851 | 6800 | 0.8033 | 0.9931 | 0.2804 |
0.4456 | 18.3511 | 6900 | 0.7595 | 1.0057 | 0.2801 |
0.4396 | 18.6170 | 7000 | 0.7648 | 1.0057 | 0.2816 |
0.4396 | 18.8830 | 7100 | 0.7651 | 0.9965 | 0.2818 |
0.4396 | 19.1489 | 7200 | 0.7942 | 1.0526 | 0.2821 |
0.4396 | 19.4149 | 7300 | 0.7584 | 1.0329 | 0.2865 |
0.4396 | 19.6809 | 7400 | 0.7743 | 1.0247 | 0.2839 |
0.4402 | 19.9468 | 7500 | 0.7724 | 0.9974 | 0.2782 |
0.4402 | 20.2128 | 7600 | 0.8211 | 1.0083 | 0.2819 |
0.4402 | 20.4787 | 7700 | 0.7944 | 0.9985 | 0.2845 |
0.4402 | 20.7447 | 7800 | 0.8000 | 1.0283 | 0.2809 |
0.4402 | 21.0106 | 7900 | 0.7961 | 1.0393 | 0.2848 |
0.4161 | 21.2766 | 8000 | 0.8153 | 1.0126 | 0.2868 |
0.4161 | 21.5426 | 8100 | 0.7890 | 1.0290 | 0.2848 |
0.4161 | 21.8085 | 8200 | 0.8137 | 0.9949 | 0.2876 |
0.4161 | 22.0745 | 8300 | 0.8160 | 1.0130 | 0.2883 |
0.4161 | 22.3404 | 8400 | 0.8261 | 0.9967 | 0.2843 |
0.4122 | 22.6064 | 8500 | 0.8360 | 1.0004 | 0.2872 |
0.4122 | 22.8723 | 8600 | 0.7974 | 0.9870 | 0.2845 |
0.4122 | 23.1383 | 8700 | 0.8509 | 1.0251 | 0.2959 |
0.4122 | 23.4043 | 8800 | 0.8392 | 1.0060 | 0.2996 |
0.4122 | 23.6702 | 8900 | 0.8572 | 1.0025 | 0.2960 |
0.4233 | 23.9362 | 9000 | 0.8738 | 1.0243 | 0.2959 |
0.4233 | 24.2021 | 9100 | 0.8740 | 1.0279 | 0.2897 |
0.4233 | 24.4681 | 9200 | 0.8348 | 1.0178 | 0.2910 |
0.4233 | 24.7340 | 9300 | 0.8519 | 1.0287 | 0.2965 |
0.4233 | 25.0 | 9400 | 0.8510 | 0.9975 | 0.3038 |
0.4072 | 25.2660 | 9500 | 0.8886 | 1.0440 | 0.2998 |
0.4072 | 25.5319 | 9600 | 0.9135 | 0.9960 | 0.3032 |
0.4072 | 25.7979 | 9700 | 0.8631 | 1.0018 | 0.3065 |
0.4072 | 26.0638 | 9800 | 0.8652 | 1.0216 | 0.2992 |
0.4072 | 26.3298 | 9900 | 0.8664 | 1.0366 | 0.2960 |
0.4149 | 26.5957 | 10000 | 0.8856 | 1.0248 | 0.3047 |
0.4149 | 26.8617 | 10100 | 0.8662 | 1.0223 | 0.2998 |
0.4149 | 27.1277 | 10200 | 0.9195 | 0.9953 | 0.3116 |
0.4149 | 27.3936 | 10300 | 0.9434 | 1.0148 | 0.3118 |
0.4149 | 27.6596 | 10400 | 0.8643 | 1.0126 | 0.3096 |
0.4264 | 27.9255 | 10500 | 0.9074 | 1.0062 | 0.3078 |
0.4264 | 28.1915 | 10600 | 0.8856 | 1.0497 | 0.3035 |
0.4264 | 28.4574 | 10700 | 0.8924 | 1.0676 | 0.3032 |
0.4264 | 28.7234 | 10800 | 0.9018 | 1.0203 | 0.3002 |
0.4264 | 28.9894 | 10900 | 0.9206 | 1.0573 | 0.3049 |
0.4091 | 29.2553 | 11000 | 0.8745 | 1.0294 | 0.3033 |
0.4091 | 29.5213 | 11100 | 0.8626 | 0.9920 | 0.3053 |
0.4091 | 29.7872 | 11200 | 0.9597 | 1.0218 | 0.3129 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for utakumi/Hubert_noisy_common_voice_phonemes_debug
Base model
rinna/japanese-hubert-base