Safetensors
English
llama
File size: 5,811 Bytes
b294972
e514e5d
b294972
 
 
 
 
 
8c8ed27
 
 
be4ebd4
9387781
a5c4043
 
8c8ed27
be4ebd4
 
8c8ed27
9387781
8c8ed27
9387781
8c8ed27
e2e9cd4
8c8ed27
 
 
e2e9cd4
9387781
e2e9cd4
9387781
8c8ed27
775ab84
8c8ed27
20eeff1
8c8ed27
 
 
9387781
8c8ed27
e2e9cd4
8c8ed27
9387781
b2cddf8
8c8ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9387781
28c38be
 
 
 
 
 
 
 
 
 
8c8ed27
8a9caae
8c8ed27
 
 
9387781
 
8c8ed27
 
8a9caae
 
 
 
 
 
 
 
 
 
 
 
 
 
8c8ed27
 
 
9387781
 
8c8ed27
 
1053d58
5c9c794
1053d58
e514e5d
a0c5835
e514e5d
8c8ed27
 
 
b9cc41f
8c8ed27
e2e9cd4
9387781
e2e9cd4
 
 
 
 
 
8c8ed27
 
 
920d7aa
8c8ed27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: cc-by-nc-4.0
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---



# CoALM-8B: Conversational Agentic Language Model

[![Made with Oumi](https://badgen.net/badge/Made%20with/Oumi/%23085CFF?icon=https%3A%2F%2Foumi.ai%2Flogo_dark.svg)](https://github.com/oumi-ai/oumi)



## Model Description
**CoALM-8B** is the smallest open-source model of **CoALM** (Conversational Agentic Language Model) series, designed to integrate both **Task-Oriented Dialogue (TOD) capabilities** and **Language Agent (LA) functionalities** into a unified system. By fine-tuning on **CoALM-IT**, a novel dataset that interleaves multi-turn ReAct-based reasoning with complex API usage, CoALM-8B achieves promising results on TOD and function-calling benchmarks.

CoALM-8B is trained on a **multi-task dataset** covering dialogue state tracking, function calling, and multi-turn reasoning. The model outperforms top domain-specific models on key evaluation benchmarks: **MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA).**

## Model Sources

<!-- Provide the basic links for the model. -->

- πŸ“ **Paper:** https://arxiv.org/abs/2502.08820
- 🌐 **Project Page:** https://emrecanacikgoz.github.io/CoALM/
- πŸ’» **Repository:** https://github.com/oumi-ai/oumi/tree/main/configs/projects/calm
- πŸ’Ž **Dataset:** https://huggingface.co/datasets/uiuc-convai/CoALM-IT




---
## Model Details

- **Model Name:** CoALM-8B  
- **Developed by:** Colloboration of UIUC Conversational AI LAB and Oumi 
- **License:** cc-by-nc-4.0  
- **Architecture:** Fine-tuned **Llama 3.1 8B Instruct**  
- **Training Data:** CoALM-IT dataset
- **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)
- **Training Hardware:** 8 NVIDIA H100 GPUs  
- **Training Duration:** ~8 hours  
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank  
- **Release Date:** February 5, 2025  

---
## Capabilities and Features

### πŸ—£ Conversational Agentic Abilities
- **Multi-turn Dialogue Mastery:** Maintains coherent conversations across multiple turns with accurate state tracking.
- **Function Calling and API Integration:** Dynamically selects and calls APIs for task execution.
- **ReAct-based Reasoning:** Utilizes a structured reasoning process (User-Thought-Action-Observation-Thought-Response).
- **Zero-Shot Generalization:** Excels in previously unseen function-calling tasks.

### πŸš€ Benchmark Performance
- **MultiWOZ 2.4 (TOD):** Excels in dialogue state tracking and task completion.
- **BFCL V3 (LA):** Demonstrates superior function-calling abilities over language agents.
- **API-Bank (LA):** Accurately generates API calls and integrates responses into conversation flow.

---
## Training Process
### πŸ”§ Fine-tuning Stages
1. **TOD Fine-tuning:** Optimized for dialogue state tracking (e.g., augmented SNIPS reformatted in Alpaca-style instruction tuning).
2. **Function Calling Fine-tuning:** Trained to select and generate well-formed API calls from LA datasets.
3. **ReAct-based Fine-tuning:** Addresses multi-turn conversations with API integration using a structured reasoning framework.

### πŸ” Training Hyperparameters
- **Base Model:** Llama 3.1 8B Instruct
- **LoRA Config:** Rank = 16, Scaling Factor = 32
- **Batch Size:** 8
- **Learning Rate:** 1e-4
- **Optimizer:** AdamW (betas = 0.9, 0.999, epsilon = 1e-8)
- **Precision:** Mixed precision (bfloat16)
- **Warm-up Steps:** 0.1 ratio of total steps
- **Gradient Accumulation Steps:** 1

---
## πŸ’‘ CoALM-IT Dataset
<img src="table.png" alt="CALM-IT Dataset Statistics" width="800"/>


---
## πŸ“Š Benchmark Performance

<img src="results.png" alt="CALM-IT Dataset Statistics" width="1000"/>
---


## Usage
### πŸ— How to Load the Model using Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CoALM-8B")
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CoALM-8B")
```

### πŸ›  Example Oumi Inference
```bash
pip install oumi

# See oumi_infer.yaml in this model's /oumi/ directory.
oumi infer -i -c ./oumi_infer.yaml
```

### πŸ›  Example Oumi Fine-Tuning
```bash
pip install oumi

# See oumi_train.yaml in this model's /oumi/ directory.
oumi train -c ./oumi_train.yaml
```

---
- **Task-Specific Calibration:** While CoALM-8B generalizes well across tasks, performance can improve with domain-specific fine-tuning.
- **Scalability to Larger Models:** Future iterations (CoALM-70B, CoALM-405B) extend capabilities to larger-scale agentic conversations.
- **Open-Source Expansion:** All datasets, training scripts, and model checkpoints are publicly available to foster further research.

## Acknowledgements
We'd like to thank the [Oumi AI Team](https://github.com/oumi-ai/oumi) for collaborating on training the models using the Oumi platform on [Together AI's](https://www.together.ai/) cloud.

## License
This model is licensed under [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).

<!-- TODO -->
---
## Citation
If you use **CoALM-8B** in your research, please cite:
```
@misc{acikgoz2025singlemodelmastermultiturn,
      title={Can a Single Model Master Both Multi-turn Conversations and Tool Use? CoALM: A Unified Conversational Agentic Language Model}, 
      author={Emre Can Acikgoz and Jeremiah Greer and Akul Datta and Ze Yang and William Zeng and Oussama Elachqar and Emmanouil Koukoumidis and Dilek Hakkani-TΓΌr and Gokhan Tur},
      year={2025},
      eprint={2502.08820},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2502.08820}, 
}
```

For more details, visit [Project Repository](https://github.com/oumi-ai/oumi/tree/main/configs/projects/coalm) or contact **[email protected]**.