File size: 5,811 Bytes
b294972 e514e5d b294972 8c8ed27 be4ebd4 9387781 a5c4043 8c8ed27 be4ebd4 8c8ed27 9387781 8c8ed27 9387781 8c8ed27 e2e9cd4 8c8ed27 e2e9cd4 9387781 e2e9cd4 9387781 8c8ed27 775ab84 8c8ed27 20eeff1 8c8ed27 9387781 8c8ed27 e2e9cd4 8c8ed27 9387781 b2cddf8 8c8ed27 9387781 28c38be 8c8ed27 8a9caae 8c8ed27 9387781 8c8ed27 8a9caae 8c8ed27 9387781 8c8ed27 1053d58 5c9c794 1053d58 e514e5d a0c5835 e514e5d 8c8ed27 b9cc41f 8c8ed27 e2e9cd4 9387781 e2e9cd4 8c8ed27 920d7aa 8c8ed27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
license: cc-by-nc-4.0
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# CoALM-8B: Conversational Agentic Language Model
[](https://github.com/oumi-ai/oumi)
## Model Description
**CoALM-8B** is the smallest open-source model of **CoALM** (Conversational Agentic Language Model) series, designed to integrate both **Task-Oriented Dialogue (TOD) capabilities** and **Language Agent (LA) functionalities** into a unified system. By fine-tuning on **CoALM-IT**, a novel dataset that interleaves multi-turn ReAct-based reasoning with complex API usage, CoALM-8B achieves promising results on TOD and function-calling benchmarks.
CoALM-8B is trained on a **multi-task dataset** covering dialogue state tracking, function calling, and multi-turn reasoning. The model outperforms top domain-specific models on key evaluation benchmarks: **MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA).**
## Model Sources
<!-- Provide the basic links for the model. -->
- π **Paper:** https://arxiv.org/abs/2502.08820
- π **Project Page:** https://emrecanacikgoz.github.io/CoALM/
- π» **Repository:** https://github.com/oumi-ai/oumi/tree/main/configs/projects/calm
- π **Dataset:** https://huggingface.co/datasets/uiuc-convai/CoALM-IT
---
## Model Details
- **Model Name:** CoALM-8B
- **Developed by:** Colloboration of UIUC Conversational AI LAB and Oumi
- **License:** cc-by-nc-4.0
- **Architecture:** Fine-tuned **Llama 3.1 8B Instruct**
- **Training Data:** CoALM-IT dataset
- **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)
- **Training Hardware:** 8 NVIDIA H100 GPUs
- **Training Duration:** ~8 hours
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
- **Release Date:** February 5, 2025
---
## Capabilities and Features
### π£ Conversational Agentic Abilities
- **Multi-turn Dialogue Mastery:** Maintains coherent conversations across multiple turns with accurate state tracking.
- **Function Calling and API Integration:** Dynamically selects and calls APIs for task execution.
- **ReAct-based Reasoning:** Utilizes a structured reasoning process (User-Thought-Action-Observation-Thought-Response).
- **Zero-Shot Generalization:** Excels in previously unseen function-calling tasks.
### π Benchmark Performance
- **MultiWOZ 2.4 (TOD):** Excels in dialogue state tracking and task completion.
- **BFCL V3 (LA):** Demonstrates superior function-calling abilities over language agents.
- **API-Bank (LA):** Accurately generates API calls and integrates responses into conversation flow.
---
## Training Process
### π§ Fine-tuning Stages
1. **TOD Fine-tuning:** Optimized for dialogue state tracking (e.g., augmented SNIPS reformatted in Alpaca-style instruction tuning).
2. **Function Calling Fine-tuning:** Trained to select and generate well-formed API calls from LA datasets.
3. **ReAct-based Fine-tuning:** Addresses multi-turn conversations with API integration using a structured reasoning framework.
### π Training Hyperparameters
- **Base Model:** Llama 3.1 8B Instruct
- **LoRA Config:** Rank = 16, Scaling Factor = 32
- **Batch Size:** 8
- **Learning Rate:** 1e-4
- **Optimizer:** AdamW (betas = 0.9, 0.999, epsilon = 1e-8)
- **Precision:** Mixed precision (bfloat16)
- **Warm-up Steps:** 0.1 ratio of total steps
- **Gradient Accumulation Steps:** 1
---
## π‘ CoALM-IT Dataset
<img src="table.png" alt="CALM-IT Dataset Statistics" width="800"/>
---
## π Benchmark Performance
<img src="results.png" alt="CALM-IT Dataset Statistics" width="1000"/>
---
## Usage
### π How to Load the Model using Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CoALM-8B")
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CoALM-8B")
```
### π Example Oumi Inference
```bash
pip install oumi
# See oumi_infer.yaml in this model's /oumi/ directory.
oumi infer -i -c ./oumi_infer.yaml
```
### π Example Oumi Fine-Tuning
```bash
pip install oumi
# See oumi_train.yaml in this model's /oumi/ directory.
oumi train -c ./oumi_train.yaml
```
---
- **Task-Specific Calibration:** While CoALM-8B generalizes well across tasks, performance can improve with domain-specific fine-tuning.
- **Scalability to Larger Models:** Future iterations (CoALM-70B, CoALM-405B) extend capabilities to larger-scale agentic conversations.
- **Open-Source Expansion:** All datasets, training scripts, and model checkpoints are publicly available to foster further research.
## Acknowledgements
We'd like to thank the [Oumi AI Team](https://github.com/oumi-ai/oumi) for collaborating on training the models using the Oumi platform on [Together AI's](https://www.together.ai/) cloud.
## License
This model is licensed under [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
<!-- TODO -->
---
## Citation
If you use **CoALM-8B** in your research, please cite:
```
@misc{acikgoz2025singlemodelmastermultiturn,
title={Can a Single Model Master Both Multi-turn Conversations and Tool Use? CoALM: A Unified Conversational Agentic Language Model},
author={Emre Can Acikgoz and Jeremiah Greer and Akul Datta and Ze Yang and William Zeng and Oussama Elachqar and Emmanouil Koukoumidis and Dilek Hakkani-TΓΌr and Gokhan Tur},
year={2025},
eprint={2502.08820},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.08820},
}
```
For more details, visit [Project Repository](https://github.com/oumi-ai/oumi/tree/main/configs/projects/coalm) or contact **[email protected]**.
|